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Abstract

Respiratory motion analysis and management are crucial issues for a plurality of
medical applications. Of particular scientific concern are methods that allow to
analyze the patient’s breathing in a non-invasive and real-time manner that does
not involve ionizing radiation exposure. For this purpose, range imaging tech-
nologies, that allow to dynamically acquire three-dimensional body surface data,
have been proposed over the last years. A particular challenge with such methods
is a fully automatic investigation and assessment of the body surface data, as well
as computation times that comply with real-time constraints. This dissertation is
concerned with the application of range imaging principles for real-time automatic
respiratory motion analysis. The focus is on the development of efficient methods
for data preprocessing and fusion as well as machine learning and surface registra-
tion techniques. A particular emphasis of this thesis is the design of the proposed
algorithms for GPU architectures to enable real-time computation.

The first part of this thesis covers the general challenges and requirements for
respiratory motion analysis in diagnostic and therapeutic applications. Further-
more, the range imaging technologies that are relevant for this thesis are intro-
duced and the suitability of GPU architectures for accelerating the computation
of several tasks inherent to range imaging based respiratory motion analysis are
investigated.

The second part of this work is concerned with pre-processing and fusion tech-
niques for range data. To account for the low signal-to-noise ratio that is common
with range data, this work proposes a processing pipeline that allows to recon-
struct the ideal data with an error trueness less than 1.0 mm at run-times of 2 ms.
For fusing range image data in a multi-camera setup, as it is required for the simul-
taneous acquisition of frontal and lateral body surface, this thesis proposes a novel
framework that enables the computation of a 180◦ coverage body surface model
consisting of more than 3.0× 105 points with a computation time of less than 5 ms.

The third part of this work is concerned with patient-specific respiratory mo-
tion models. The thesis proposes machine learning techniques to generate a con-
tinuous motion model that features the ability to automatically differentiate be-
tween thoracic and abdominal breathing as well as to quantitatively analyze the
patient’s respiration magnitude. By using purposely developed surface registra-
tion schemes, these models are then brought in congruence with body surface data
acquired by range imaging sensors. This allows for respiratory motion compen-
sated patient positioning that reduces the alignment error observed with conven-
tional approaches by a factor of 3 to less than 4.0 mm. Further, this approach allows
to automatically derive a multi-dimensional respiration surrogate that yields a cor-
relation coefficient greater than 0.97 compared to commonly employed invasive or
semi-automatic approaches and that can be computed in 20 ms.

The fourth part concludes this thesis with a summary of the presented meth-
ods and results, as well as an outlook regarding future research directions and
challenges towards clinical translation.



Kurzfassung

Die Analyse und Handhabung von Atembewegungen sind grundlegende Prob-
leme für viele medizinische Anwendungen. Von speziellem wissenschaftlichen In-
teresse sind hierbei Methoden, die es ermöglichen die Atmung des Patienten nicht-
invasiv, ohne den Einsatz ionisierender Strahlung, und in Echtzeit zu analysieren.
Für diese Fragestellung wurden kürzlich Technologien der Tiefenbildgebung, die
es ermöglichen dreidimensionale Abbildungen der Körperoberfläche dynamisch
zu erfassen, vorgeschlagen. Die besonderen Herausforderungen in diesem Um-
feld sind eine vollautomatische Untersuchung und Auswertung der Körperober-
flächendaten sowie Berechnungszeiten die Echtzeitanforderungen gerecht wer-
den. Diese Dissertation befasst sich mit der Nutzung der Tiefenbildgebung zur
echtzeitfähigen automatischen Atembewegungsanalyse. Der Schwerpunkt liegt
hierbei auf der Entwicklung von effizienten Methoden zur Datenvorverarbeitung
und Sensorfusion sowie Verfahren des maschinellen Lernens und der Oberflächen-
registrierung. Ein zentraler Bestandteil ist dabei die Konzipierung der Algorith-
men für Grafikprozessoren um eine echtzeitfähige Berechnung zu ermöglichen.

Im ersten Teil der Arbeit werden die generellen Herausforderungen und An-
forderungen der Atembewegungsanalyse für diagnostische und therapeutische
Verfahren dargelegt. Des Weiteren werden für diese Arbeit relevante Technolo-
gien der Tiefenbildgebung beschrieben, sowie die Eignung von Grafikprozessoren
zur effizienten Berechnung von Problemen der tiefenbildgebungsbasierten Atem-
bewegungsanalyse untersucht.

Der zweite Teil der Arbeit befasst sich mit der Vorverarbeitung und Fusion von
Tiefendaten. Zur Verbesserung des oftmals niedrigen Signal-Rausch-Verhältnisses
von Tiefendaten wird eine Verarbeitungskette vorgestellt, die es ermöglicht die
idealen Daten mit einer Genauigkeit unter 1.0 mm und einer Laufzeit von 2 ms
zu rekonstruieren. Zur Fusionierung von Tiefendaten in einem Mehrkameraauf-
bau, wie er zur gleichzeitigen Erfassung der vorderen und seitlichen Körperober-
fläche notwendig ist, beschreibt diese Arbeit ein neuartiges Verfahren das es er-
möglicht ein dreidimensionales 180◦ Abbild der Körperoberfläche bestehend aus
über 3.0× 105 Punkten und einer Laufzeit von unter 5 ms zu berechnen.

Der Fokus des dritten Teils der Arbeit liegt auf patientenspezifischen Atem-
bewegungsmodellen. Es werden Verfahren des maschinellen Lernens zur Erstel-
lung kontinuierlicher Atembewegungsmodelle beschrieben, welche eine automa-
tische Unterscheidung zwischen Brust- und Bauchatmung sowie eine quantita-
tive Bewertung der Atemmagnitude ermöglichen. Durch speziell entwickelte Reg-
istrierungsverfahren werden diese Modelle mit Oberflächendaten in Deckungsgle-
ichheit gebracht. Dies ermöglicht eine atembewegungskompensierte Patientenpo-
sitionierung die, im Vergleich zu herkömmlichen Verfahren, den Positionierungs-
fehler um den Faktor 3 auf unter 7.0 mm reduziert. Zudem erlaubt dieser Ansatz
die vollautomatische Ableitung eines mehrdimensionalen Atemsurrogates das zu
konventionellen semi-automatischen oder invasiven Verfahren einen Korrelations-
koeffizienten von mehr als 0.97 aufweist, und in 20 ms berechnet werden kann.

Der vierte Teil schließt die Arbeit mit einer Zusammenfassung der vorgestell-
ten Verfahren und Ergebnisse sowie einem Ausblick bezüglich weiterführenden
Forschungsrichtungen und Herausforderungen einer klinischen Umsetzung.
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C H A P T E R 1

Introduction

1.1 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Compensating for respiration induced motion is a crucial factor for the success of
a plurality of medical procedures. For example, in fractionated radiation therapy
the patient must be aligned to pre-procedurally obtained planning data which im-
plies the need to compensate for the difference between the patient’s current respi-
ration state and the one that governs the planning data. Further, for accurate dose
delivery the patient must be continuously monitored in order to instantaneously
initiate measures that compensate for tumor motion caused by respiration.

For both, alignment and continuous motion monitoring, methods based on
range imaging (RI) that provides dense body surface data at real-time frame-rates
have been proposed in the recent past. Compared to commonly employed imag-
ing techniques such as cone beam computed tomography (CT) or portal imaging
for setup verification and pressure belts or reflective vests for motion monitoring,
RI systems are marker-less, non-intrusive and do not involve ionizing radiation
exposure. Besides a high degree of accuracy and reliability, low latencies are key
issues for the success of such RI systems in clinical routine. This poses a chal-
lenge as contemporary RI sensors typically stream a huge amount of raw data that
must be processed to account for noise and outliers, fused to a unifying repre-
sentation in a multi-camera setup and ultimately analyzed for the actual motion
compensation purposes. Though algorithmic techniques may be used to speed
up selected computation steps, dedicated hardware acceleration concepts are in
general mandatory.

The thesis at hand is concerned with methods for real-time respiratory motion
analysis using Graphics Processing Unit (GPU) accelerated RI. As the main contri-
bution, the thesis proposes a real-time capable framework using prior knowledge
on 4-D shape deformations to unify the problems of respiratory motion compen-
sated patient positioning and continuous respiration monitoring. From a method-
ological perspective, the thesis covers the following aspects. First, pre-processing
and multi-sensor fusion methods for RI data as a fundamental prerequisite for sub-
sequent analysis are investigated. Second, the thesis researches machine learning
and pattern recognition techniques for patient specific 4-D shape motion models
and dedicated surface registration methods to drive real-time RI-based respiratory
motion analysis.

3



4 1 Introduction

1.1 Scientific Contributions

The scientific focus of this thesis is the investigation of existing and the develop-
ment of novel RI concepts for respiratory motion analysis in computer assisted
interventions. Due to the importance of real-time constraints in clinical routine,
a focus throughout this work is on hardware acceleration using GPUs. The main
contributions along with the corresponding scientific papers that have been pub-
lished during the course of this thesis are:

• Real-time RI processing: High frame-rates and low latencies are the cor-
nerstone for high temporal resolution respiratory motion analysis. This re-
quires a proper software architecture and efficient data pre-processing strate-
gies to enhance the raw data streamed by RI sensors. The thesis proposes
GPU-based hardware acceleration techniques that have been published in
[Wasz 11a, Wasz 11c, Wasz 11b]. As these publications did not focus on res-
piratory motion in particular, this thesis provides an additional thorough
evaluation of RI processing techniques in a respiratory motion scenario.

• Real-time fusion of multi-view RI data: Respiratory motion analysis us-
ing a single RI sensor is often not feasible, for example due to occlusions by
clinical devices, and further prohibits high coverage body surface acquisi-
tion. Thus, multiple sensors are required which implies the need for efficient
methods to fuse an consolidate this data. The contribution for this task is
a GPU accelerated volumetric fusion approach in conjunction with a novel
ray casting technique that is tailored to the human anatomy and that enables
an 180◦ coverage body surface reconstruction at real-time frame-rates. These
concepts were firstly published in [Wasz 13, Wasz 16].

• 4-D shape motion models for RI-based respiration analysis: Existing meth-
ods for RI-based respiratory motion analysis are commonly based on heuris-
tics and do not account for the anatomical nature of motion. This thesis pro-
poses pattern recognition methods to set up anatomically founded shape mo-
tion models for fully automatic analysis of respiratory motion as published
in [Wasz 12b, Wasz 12a]. Elaborating on this concept, this thesis proposes
sparse models to enable an unsupervised differentiation between different
breathing patterns as published in [Wasz 12a, Wasz 16]. Further, this thesis
provides a joint theoretical and anthropological investigation of respiration
induced body surface deformation as firstly published in [Wasz 13] to quan-
tify requirements for RI-based respiration analysis.

• Real-time respiratory motion analysis using 4-D shape priors: Building
upon the developed concepts for RI data processing and 4-D shape motion
models, this thesis proposes a real-time framework that unifies the problems
of motion compensated patient alignment [Wasz 12b, Wasz 13] and continu-
ous respiration monitoring using external surrogates [Wasz 16]. The main
contributions are novel schemes to derive non-redundant external model
driven respiration surrogates from dense body surface data and efficient
GPU accelerated surface registration methods for real-time computation.



1.1 Scientific Contributions 5

Figure 1.1: The respiratory motion analysis framework proposed in this thesis
along with the major scientific contributions highlighted in blue. The framework
divides into a pre-procedural stage to set up a 4-D shape motion model that is
intra-procedurally registered to multi-view RI body surface data enabling motion
compensated patient positioning and continuous respiratory motion monitoring.

Altogether, these contributions provide a unifying framework for real-time RI-
based respiratory motion analysis that is illustrated in Fig. 1.1. The key prin-
ciple of this framework is to divide the problem of respiratory motion analysis
into a pre-procedural stage to set up a patient specific 4-D motion model captur-
ing prior knowledge on body surface deformations that is registered in the intra-
procedural phase to RI data for real-time deformation estimation. In particular, this
framework enables motion compensated patient positioning outperforming con-
ventional alignment strategies by a factor of about 3 and continuous motion mon-
itoring using a non-intrusive radiation free method that significantly correlates
with conventionally employed intrusive or heuristic techniques. Using the princi-
ple of GPU computing that is pursued throughout this thesis, real-time run-times
of approximately 20 ms or 50 Hz are achieved on off-the-shelf hardware. These
run-times satisfy current clinical requirements imposing a maximum time delay
of few hundred milliseconds and comply with recommendations on future sys-
tems to keep delays as short as possible.



6 1 Introduction

Contributions to other work Several RI concepts that were developed during
the course of this thesis contributed to other scientific work. This includes con-
tributions to photometric surface deformation estimation [Baue 12c], multi-modal
marker-less coarse patient setup [Baue 11] in fractionated radiation therapy, organ
surface registration in an augmented reality scenario [Mull 11], and 3-D endoscopy
[Haas 13b, Haas 13a, Kohl 13] for minimally invasive surgery. Besides clinical ap-
plications, techniques developed in this thesis have also been used in a computer
vision scenario that targets 3-D scene reconstruction [Neum 11, Baue 13b].

1.2 Organization of the Thesis

The thesis is divided into four major parts according to the general issues and
methodical challenges, see also Fig. 1.1 for an overview.

Part I The background embedding this thesis and problems that are of relevance
w. r. t. real-time respiratory motion analysis using RI technology is covered in this
part. Chapter 2 outlines the clinical background, requirements and challenges of
RI-based respiratory motion analysis in computer assisted interventions. Further,
the basic RI data acquisition principles and sensors used in this work are outlined.
As an important aspect, the paradigm of general purpose computing on GPUs
(GPGPU) that is pursued in this thesis for real-time computation is introduced.

Part II The focus of the second part is on real-time RI as the key for respiratory
motion analysis as investigated in this thesis. Chapter 3 introduces the mathemati-
cal foundations on RI data acquisition and the basic notation that is used through-
out this thesis. Subsequently, algorithmic methods for range data enhancement
and denoising strategies to cope with the low quality of the raw depth measure-
ments obtained from RI sensors are investigated in Chapter 4. The second part
of this thesis concludes with Chapter 5 that covers a framework for the fusion of
range data obtained from multiple sensors in conjunction with a reconstruction
technique that enables high coverage patient body surface models in real-time.

Part III The third part elaborates on pattern recognition and machine learning
techniques for RI-based respiratory motion analysis. The general principle of 4-D
shape priors is covered in Chapter 6 with a focus on establishing surface corre-
spondences across different respiration states using non-rigid registration meth-
ods and dimensionality reduction techniques. Additionally, this chapter details a
method for unsupervised decomposition of body surface deformation fields into
distinct breathing patterns. The application of 4-D shape priors for motion com-
pensated patient alignment and continuous respiratory motion monitoring is the
focus of Chapter 7. Methodologically, this chapter focuses on efficient point-set
and surface registration schemes to align motion models to RI data.

Part IV The thesis concludes with an outlook, future research directions and
challenges for clinical translation in Chapter 8 and a summary in Chapter 9.
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This chapter covers the general background sustaining this thesis. After outlining
the importance of respiratory motion analysis and management in therapy and
diagnostics, RI technology as means for real-time scene acquisition is presented.
Further, this chapter introduces the paradigm of general purpose computing on
GPUs which is pursued throughout this thesis for the purpose of complying with
real-time constraints.

2.1 Respiratory Motion in Therapy and Diagnostics

Respiratory motion is considered a major challenge in many computer assisted
interventions and diagnostic applications such as medical image reconstruction.
This is due to the fact that respiration induced internal deformations cause devia-
tions to pre-procedural planning data for interventions and severe motion artifacts
with image reconstruction. The simplest option to decrease the effect of respiratory
motion is to reduce the respiration magnitude using for example breath-holding,
abdominal pressure or active breath-control systems [Hof 03], cf. Fig. 2.1a. How-
ever, these techniques are inadequate for many solutions. This led to the devel-
opment of gating or binning techniques where the intervention or acquisition is
limited to a certain respiration phase. For CT acquisition for example, a gated
reconstruction reduces the image artifacts by up to 50% [Bern 15]. Further, so-
phisticated motion models that continuously correct for the effect of respiratory
motion have been proposed. For a comprehensive review of motion models for
image guided interventions as well as for motion corrected image acquisition and
reconstruction, the reader is referred to the work of McClelland et al. [McCl 13].

One crucial aspect for respiratory motion analysis and compensation is whether
the target motion is tracked directly or measured via a respiration surrogate. Fur-
ther, it is of importance whether the system must be real-time capable as motion
analysis is performed during the procedure. While for motion compensated recon-
struction retrospective correction techniques based on the actual image data, as for
example proposed by Wachinger et al. [Wach 12], can be used, respiratory motion

7
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(a) Siemens Artiste. 1 (b) BrainLab ExacTrac. 2 (c) Accuray Cyberknife. 3

Figure 2.1: Clinically available IGRT systems with different strategies to cope with
respiratory motion. The left system reduces the respiration magnitude using ab-
dominal pressure, the platform in the middle performs gated treatment and the
right system performs motion tracking. Note that most motion management solu-
tions are realized as extensions to existing IGRT systems [Will 12].

analysis and compensation in many computer assisted interventions typically re-
quire real-time capable systems and a direct observation of respiratory motion is
not feasible or even prohibitive.

For generating respiration surrogates, RI sensors have gained increasing pop-
ularity over the last years as they are non-invasive, real-time capable, and provide
dense body surface data. The thesis at hand is concerned with novel concepts for
RI-based respiratory motion analysis such as model-based respiration surrogates
or motion-compensated patient-positioning techniques. In particular, the inves-
tigated methods hold benefit for image guided radiation therapy that inherently
requires real-time capability and where a direct observation of the moving target
structures might be prohibitive due to additional ionizing radiation exposure or
invasiveness. Due to the importance of the topic for this thesis, the basic principles
of image guided radiation therapy and the proposed RI solutions for respiratory
motion management will be detailed in the following section.

2.1.1 Image Guided Radiation Therapy

Besides chemotherapy and surgery, image guided external beam radiation therapy
(IGRT) is a commonly used treatment option for cancer patients. IGRT aims for de-
stroying tumor cells by using ionizing radiation beams delivered by linear particle
accelerators (LINACs) that are free to move around the patient. To ensure both a
proper tumor irradiation and sparing of healthy tissue, dose delivery is performed
using different LINAC positions and beam directions. The actual irradiation pro-
tocol is based on a patient-specific pre-procedurally derived image guided treat-
ment plan that contains both the so-called clinical target volumes (CTVs) defining
different areas of dose delivery as well as surrounding critical structures and or-
gans where it is crucial to reduce the radiation dose to a low level. Typically, this

1http://siemens.com/press/photo/sohim201103-01d
2http://middleeasthospital.com/wp-content/uploads/2009/09/exactrac_xray_6d.jpg
3http://accuray.com/sites/default/files/vpk_assets/cyberknife_system_product.jpg

http://siemens.com/press/photo/sohim201103-01d
http://middleeasthospital.com/wp-content/uploads/2009/09/exactrac_xray_6d.jpg
http://accuray.com/sites/default/files/vpk_assets/cyberknife_system_product.jpg
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treatment plan is derived from CT, however, recent approaches also employ mag-
netic resonance imaging (MRI) enabling superior soft-tissue visualization without
potentially harmful ionizing radiation exposure [Evan 08].

A common approach for dose delivery is fractionated IGRT where the total
dose is spread across several sessions. The objective here is to allow healthy cells
to recover between fractions and to maximize the probability of irradiating malig-
nant cells in phases of low radio-resistance. Besides the treatment plan the suc-
cess of fractionated IGRT for both ensuring a proper dose delivery to the target
area as well as not harming healthy tissue depends on two critical factors: inter-
fractional variations and intra-fractional changes of tumor location and lung func-
tion [Will 12, Kipr 15]. Inter-fractional variations are due to a variety of reasons
such as organ movement caused by the digestive and urinary system, differences
in the breathing baseline or the patient position itself. Minimizing inter-fractional
movement by an accurate patient setup prior to dose delivery is therefore manda-
tory. Subsequently, during dose delivery, motion mitigation strategies must be
used to cope with intra-fractional internal movement that are mainly due to res-
piratory and cardiac motion. Especially for thoraco-abdominal cancer treatment
procedures, intra-fractional tumor movement due to respiration is recognized as
a major challenge with motion magnitudes over 10 mm in superior-inferior (SI)
direction [Liu 07] that causes significant dosimetric errors [Yu 98, Keal 06, Bert 11].
A comprehensive survey on motion in radiation therapy is beyond the scope of
this thesis. The reader is referred to the report of the American Association of
Physicists in Medicine (AAPM) task group 76 [Keal 06] or the reviews of Bert and
Durante [Bert 11] and Korreman [Korr 12].

One option to decrease the effect of respiration induced tumor movement is to
reduce the respiratory motion magnitude using for example active breath-control
systems or abdominal pressure [Hof 03]. The latter strategy is depicted in Fig. 2.1a.
However, such techniques are limited by the ability of cancer patients to maintain
a specific lung capacity and a total elimination of respiration induced motion is
impossible [Yan 06]. More advanced approaches are based on motion monitoring
techniques to generate a time-resolved respiration signal. This signal can then
be used for breathing guidance [Poll 15] or as basis for gating techniques where
the radiation beam is only active during specific parts of the breathing cycle as
implemented in the ExacTrac system (Brainlab AG, Feldkirchen, Germany) that
is depicted in Fig. 2.1b, or tracking solutions that adjust the beam continuously as
pursued with the Vero platform (Brainlab AG, Feldkirchen, Germany & Mitsubishi
Heavy Industries Ltd., Minato (Tokyo), Japan) or the CyberKnife system (Accuray
Inc., Sunnyvale, USA) that is shown in Fig. 2.1c. All these approaches have in
common that the respiration signal can either be derived from the tumor motion
itself or from a respiration surrogate. In any case, these systems must be real-time
capable and the total time delay should be as short as possible and never exceed
0.5 s with typical time delays ranging from 90 ms to 200 ms for clinically available
solutions [Keal 06].

The predominant way to generate direct respiration signals is based on X-ray
fluoroscopy, cone-beam CT or implanted markers. Though these direct measure-
ments feature a high degree of accuracy and enable advanced motion tracking as
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for example proposed by Chung et al. [Chun 16], they are highly invasive or in-
volve additional ionizing radiation, both imposing risks to the patient. Further,
X-ray fluoroscopy is often limited to a few frames per minute to minimize the ra-
diation dose and implanted transponders may interfere with imaging modalities
or may not work with high energy particle therapy [Bert 11]. In contrast, respi-
ration surrogates can often be derived with zero ionizing radiation using for ex-
ample air flow analysis systems or even non-invasively by body surface observa-
tion techniques based on optical sensors. Besides their non-invasive nature, these
techniques feature high frame-rates that allow for high temporal resolution res-
piratory motion analysis. For a detailed survey on non-radiographic respiration
analysis techniques the reader if referred to the report of the AAPM task group 147
[Will 12].

The inherent challenge with respiration surrogates is the consistency of the
measured or computed external surrogate motion and the actual internal target mo-
tion. For example, Liu and Koch et al. [Liu 04, Koch 04], Yan et al. [Yan 06] or Fayad
et al. [Faya 11] showed for surface based surrogates that the correlation between
internal and external motion is strongly influenced by the relative position of the
internal target region to the external surrogate and the number of used surrogates.
The reported results imply that for predicting internal movement based on obser-
vations of the body surface it is advantageous to acquire the surrogates densely
and spread across the entire body. These requirements are inherently supported
by modern range imaging sensors that feature high resolution with a large field
of view at real-time frame-rates. Further, combining multiple sensors allows for a
complete body coverage. Thus, RI technology is a promising candidate for gener-
ating surface based respiration surrogates in fractionated IGRT.

Combining the advantages of both direct measurements and surrogates al-
lows to eliminate the disadvantages, namely ionizing radiation exposure and low
frame-rates with fluoroscopy or low precision with surrogates. This approach is
for example pursued in the ExacTrac system depicted in Fig. 2.1b where respi-
ratory motion is continuously monitored using infra-red markers attached to the
patient in combination with a periodical verification using a dual X-ray system.
However, this requires reproducible and proper marker attachment. This can be
superseded by using dense respiration surrogates generated by RI sensors.

2.2 Range Imaging

RI refers to a class of techniques that generate a 2-D image corresponding to the
depth representation of the acquired 3-D scene. More precisely, the pixels of an
RI hold the distance of 3-D scene points to a specific reference point. In contrast,
images acquired by conventional cameras depict the 2-D photometric (e. g. color
values or shades of gray) appearance of the 3-D scene. If the RI device is cali-
brated properly, the distances are given in physical units and the 3-D scene can be
reconstructed accurately.

RI is employed in a plurality of application fields as diverse as cultural heritage
preservation [Pavl 07], quality assurance in industry [Sans 09] or human pose re-
cognition in consumer electronics [Shot 13]. Especially the latter gained an incred-
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(a) Triangulation-based range computation.
Based on the intersection of two viewing
directions from different view points and
known baseline a triangle with angle γi is
used to recover depth information.

(b) Indirect run-time range measurement.
Based on the phase shift φi between an
emitted modulated signal and the received
signal and the speed of light depth informa-
tion is measured.

Figure 2.2: Basic working principles of triangulation-based depth recovery (left)
and coaxial run-time range measurement (right) as popular range imaging tech-
niques. Though relying on fundamentally different sampling principles both tech-
niques are capable of generating dense metric depth maps at real-time frame-rates.

ible increase in popularity with the market launch of Microsoft’s Kinect device
in 2010 [Zhan 12]. The Kinect device provides dense range measurements and
complementary photometric information at real-time frame-rates (30 Hz) with a
mass-market retail price of about $120. Further, RI also assumes an increasingly
important role in healthcare with applications as different as workflow monitoring
[Ladi 10], 3-D endoscopy [Maie 13] or radiation therapy [Will 12] as investigated in
this thesis. For a comprehensive review on healthcare applications that can benefit
from RI technology the reader is referred to the survey of Bauer et al. [Baue 13a].

As diverse as RI application fields is the multitude of different RI principles
that have been proposed over the past decades. The following two sections out-
line range acquisition principles and RI systems that already have found their way
into clinical practice or have been proposed for respiratory motion analysis in com-
puter assisted interventions.

2.2.1 Range Imaging Acquisition Principles

Of interest for this thesis are real-time capable RI sensors that provide dense met-
ric range measurements and feature a working distance of roughly 500 mm to
2000 mm. Suitable range acquisition principles that meet these requirements are
outlined in the following sections. A survey of state-of-the-art RI technology and
sensor specific advantages or limitations is beyond the scientific scope of this the-
sis and the reader is referred to the work of Blais [Blai 04], Sansoni et al. [Sans 09]
or Häusler and Ettl [Haus 11].
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Triangulation Methods

The governing principle of methods based on triangulation is that for a 3-D point
being observed from two different viewpoints its position in space can be calcu-
lated if the relative positions of the viewpoints and their viewing directions are
known. More precisely, the baseline between the viewpoints and viewing direc-
tions enclose a triangle and the position of the 3-D point is given by the intersec-
tion of the viewing directions, see Fig. 2.2a for an illustration. The uncertainty of
depth recovery depends on the triangulation angle and thus, the viewpoints must
be separated by a certain distance. This entails that there is a lower limit for the
size of triangulation sensors and due to the different viewpoints there might occur
occlusions and the depth cannot be recovered.

The triangulation principle for depth recovery is commonly employed in stereo
vision where a pair of images acquired from two different viewpoints is used and
the viewing directions are derived from the projections of the 3-D point in the
corresponding image planes. The relative difference in image position of the same
3-D point projected into the two image planes is known as disparity and, given
the baseline of the two viewpoints, is inversely proportional to the depth of the
3-D point [Hart 04]. Naturally, to compute a disparity map given a pair of stereo
images it is mandatory to identify corresponding pixels that describe the same 3-D
point. This correspondence problem is one of the major challenges in stereo vision for
both accuracy and run-time.

In general, there are two main approaches on how to address the correspon-
dence problem. In passive triangulation the images are acquired by two cameras
and correspondences are computed either locally by feature-matching techniques
[Bay 06] or globally by employing energy minimizing functions with smoothness
constraints across the entire image [Boyk 01]. Though progress has been made
over the last years regarding algorithmic or hardware acceleration strategies and
the correspondence problem can be restricted to a single line due to epipolar con-
straints, computing corresponding points is still a computationally demanding
task. Further, in texture-less regions or in the presence of repetitive patterns com-
puting correspondences may fail. This problem can be circumvented by using
active triangulation where a specific pattern is projected onto the scene using an
additional illumination device, thus augmenting texture-less or homogeneous re-
gions. The correspondence problem is now defined between the known pattern as
observed in both images. Active triangulation can also be realized by replacing one
camera with the projector. The correspondence problem is now defined between
the observed pattern in the image and the known projected pattern. The simplest
form of active triangulation uses just one line or a single point and is known as
light sectioning [Haus 88]. This approach substantially simplifies the correspon-
dence problem, however, depth recovery is inherently limited to a single line or a
point and requires to successively scan the scene to provide dense range measure-
ments. In contrast, area patterns allow for dense measurements but require the
projected pattern to be encoded to account for ambiguities and again imply the
need for robust point correspondences. These approaches are known as structured
light and can be further categorized w. r. t. the pattern encoding including color
vs. monochromatic or single-shot vs. temporal encoding [Salv 10].
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Coaxial Run-time Methods

Run-time methods for range measurements are based on the time it takes for a
light signal to travel from a source to an object and back to a sensor. The run-time
can either be measured directly or computed indirectly by phase measurements.
Run-time methods can be implemented as a coaxial source/detector setup which
obviates the need for a baseline as with range imaging principles based on trian-
gulation. Thus, there is no problem with missing data or shadows and the devices
can be built very compactly. Further, multi-view calibration steps as with triangu-
lation methods are not needed.

One specific run-time based method is Time-of-Flight (ToF) imaging that has
been proposed for both direct measurements using pulsed illumination or indi-
rectly via continuous wave modulation [Kolb 10]. For the latter, the outgoing light
is modulated with a carrier signal and the phase shift of the reflected and received
carrier signal is used to determine the depth, see Fig. 2.2b for an illustration of
this principle. ToF systems feature dense range measurements at very high frame-
rates up to 90 Hz with the CamBoard nano (pmdtechnologies GmbH, Siegen, Ger-
many). Further, ToF sensors provide complementary grayscale photometric infor-
mation without the need of an additional sensor. However, range data acquired
by ToF sensors is prone to noise and outliers due to a multitude of error sources.
Typically this involves a distance-related error component known as wiggling, am-
plitude related offset or multi-path reflections and sub-surface scattering. Further,
ToF devices are known to exhibit a temperature drift [Baue 13a] which restrict their
usage for controlled environments, only.

2.2.2 RI Systems for Respiratory Motion Analysis

Though in theory all real-time capable RI acquisition principles outlined in Sec-
tion 2.2.1 can be used for respiratory motion management there are few systems
that have been explicitly proposed for this problem and actually found their way
into clinical practice. In fact, the only system that gained widespread usage is
the AlignRT system (Vision RT, London, UK) [Bert 05, Scho 07, Kren 09, Peng 10,
Scha 12]. The AlignRT system acquires dense range data using the triangulation
principle with active illumination and employs multiple sensors for the purpose
of high body coverage and occlusion avoidance. The surface model consist of
approximately 10 000 3-D points with the highest reported frame-rates of 15 Hz
[Scho 07] but practically in the scale of 1 Hz to 3 Hz [Bert 05, Peng 10].

The limited acquisition speed of the AlignRT system led to new developments
such as the body surface measurement systems proposed by Price et al. [Pric 12].
This system is based on fringe projection profilometry and can thus be categorized
as a structured light technique. Reported number of surface points are up to
512× 512 with acquisition frame-rates exceeding 20 Hz [Pric 12]. Further, a recent
development is the TOPOS system (cyberTECHNOLOGIES GmbH, Ingolstadt,
Germany) proposed by Lindl et al. [Lind 13]. This system is based on structured
light and features a dual-view surface acquisition with approximately 600 000 3-D
points at refresh rates in the scale of 10 Hz.
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Figure 2.3: Comparison of CPU and GPU FLOPS (left) and memory bandwidth
(right). Note the huge discrepancy between CPU and GPU architectures that are
due to the fact that GPU devote more resources for computing rather than caching
and flow control. Graphics taken from [NVID 13].

Note that sequential surface acquisition techniques as for example used by the
Sentinel system (C-RAD AB, Uppsala, Sweden) are of no relevance for respiratory
motion analysis due to the long acquisition times that are needed for acquiring the
entire torso. Further, though ToF sensors have been proposed over the years for
respiratory motion management [Scha 08, Penn 08] such sensors are still limited to
research purposes mainly due to the low reliability of the acquired range data.

2.3 General Purpose Computing on GPUs

Traditionally, GPUs have been designed and used for rendering in computer graph-
ics. However, over the last years GPUs have evolved into powerful general pur-
pose processors for a broad variety of applications apart from computer graph-
ics such as CT reconstruction [Sche 07b], astrophysical simulations [Nyla 07] or
computational fluid dynamics [Corr 11]. The reason for this increasing popular-
ity is the higher computation power w. r. t. Floating Point Operations Per Second
(FLOPS) and memory bandwidth of modern GPUs in comparison to conventional
Central Processing Units (CPUs), see Fig. 2.3 for an illustration. GPUs are designed
for compute-intensive and massively parallel computation tasks and thus, in con-
trast to CPUs, can devote more transistors to processing rather then caching or
control flow. In particular, problems that exhibit a high level of data parallelism,
i. e. the same instructions can be issued on multiple data elements in parallel, are
particularly suited for GPUs. As shown in this thesis, respiratory motion anal-
ysis based on RI fits this paradigm. This includes conventional 2-D image pre-
processing methods from Chapter 4, memory demanding volumetric RI data fu-
sion techniques investigated in Chapter 5, or sophisticated iterative RI surface reg-
istration algorithms as covered in Chapter 7. The following paragraphs briefly out-
line the general GPU hardware architecture and GPU programming paradigms.
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Figure 2.4: Kepler GPU architecture. The GPU board consists of an array of multi-
threaded SMs each composed of several CCs that handle integer and floating point
operations. The memory divides into registers for thread-specific data, fast on-
chip memory shared across threads and global memory accessible across SMs.

2.3.1 GPU Architectures

Though the techniques and approaches investigated in this work are generic in
the sense that they can be executed on most modern GPUs, the focus is on off-
the-shelf consumer GPUs using NVIDIA’s Kepler architecture and the Compute
Unified Device Architecture (CUDA) framework 4 [NVID 13, Wilt 13].

The Kepler GPU architecture is schematically depicted in Fig. 2.4. The GPU
board is built around a scalable array of streaming multiprocessors (SMs) each
composed of 192 so-called CUDA cores (CCs) that handle the actual integer and
floating point operations. The number of SMs per GPU varies across different
models and ranges from 8 SMs for the consumer desktop GPU GeForce GTX680
to 15 SMs with the Tesla K40 that is designed for professional workstation usage.
The general design principle of Kepler GPUs is similar to older architectures such
as the Fermi series that features a different number of cores per multi-processor.

Execution Model

The CUDA execution model is to divide a given task into a grid that consists of a
problem specific number of thread blocks each consisting of a fixed number of light-
weighted threads that execute the same GPU program called kernel in parallel, see
Fig. 2.5. The term light-weighted means that a context switch between threads can
be performed instantaneously without the need to save the thread’s current state
such as currently used registers as it is common with CPU context switches. The
thread blocks are distributed across the multiprocessors and the threads of a block
execute concurrently on one SM. More detailed, threads of a block are grouped
into so-called warps of 32 parallel threads that are scheduled for execution and run

4https://developer.nvidia.com/category/zone/cuda-zone

https://developer.nvidia.com/category/zone/cuda-zone
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Figure 2.5: The CUDA execution model. A problem of size N ·M is divided into
a grid of M blocks Bm each consisting of N threads Tn that execute the same GPU
program concurrently. Multi-dimensional grids and blocks are supported, too.

in parallel on different CCs on a specific SM. The number of warps that can reside
simultaneously on one SM is limited by the resource requirements of the kernel
so that the light-weighted context switch paradigm can be satisfied. The ratio of
resident warps to the maximum number of warps is the occupancy and can have
substantial impact on the performance. The reason for this is that latencies, as for
example caused by memory transactions, can be hidden by switching to warps
that are currently not stalled and ready for execution. For details see [NVID 13].

Memory Model

The memory model of the Kepler architecture exposes a hierarchy of varying ca-
pacity and bandwidth. Each thread has access to its own registers but not to those
of other threads. Registers feature a very high bandwidth in the scale of 8000 GB/s
but are limited to a maximum of 63 (GK104) or 255 (GK110) registers per thread
and a total of 64 K per SM. On-chip memory with a high bandwidth of about
1600 GB/s is provided per SM with a capacity of typically 48 kB. This memory can
be used to share data between threads that reside in the same block or as a data
cache for individual threads. The former is of particular importance if the threads
access the same data. Sharing may help to reduce read operations from off-chip
global memory that typically features a rather low bandwidth of < 200 GB/s.

2.3.2 GPU Programming Paradigms

A detailed investigation of general GPU programming paradigms and best-practice
techniques is not within the scope of this thesis and the reader is referred to the
CUDA programming guide [NVID 13]. However, Appendix A covers a detailed
analysis of a problem that is typical for image processing as investigated through-
out this thesis. In particular, this case study focuses on a proper design w. r. t. the
hierarchical GPU memory model. For an image resolution of 640× 480 pixel and
an off-the-shelf GTX 680 GPU, the case study shows that a naive implementation
has a run-time of 0.6 ms whereas and optimized version features a superior run-
time of only 0.06 ms. Though the absolute values are low for both approaches and
the difference is of no practical relevance when considering such a processing step
in isolation, a speedup of a factor of 10 is of high relevance for filter pipelines in a
multi-sensor setup or complex iterative algorithms that require several hundreds
of steps. For respiratory motion analysis as investigated in this thesis this also
means that latencies are reduced, thus allowing for an instantaneous system re-
sponse with minimal time lags satisfying the as fast as possible recommendation by
the AAPM task group 76 for respiratory motion monitoring systems [Keal 06].
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Real-time Range Imaging
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This chapter covers the basic concepts and principles of range imaging as inves-
tigated in this thesis. In particular, the chapter elaborates on the acquisition ge-
ometry relating different sensor coordinate systems, the projective geometry and
reconstruction principles that govern RI as well as auxiliary data structures. As
a sideline, this chapter introduces the basic nomenclature and RI principles used
throughout the thesis. Further, the software framework that was developed in the
course of the thesis at hand is outlined.

3.1 Acquisition Geometry in Range Imaging

The concepts and techniques investigated in this thesis rely on multiple local ac-
quisition coordinate systems Ck associated with the k-th camera that are embed-
ded in a global world coordinate system W. Without loss of generality, this world
coordinate system is defined by the canonical origin oW ∈ R3 and the mutual
orthonormal spanning vectors {eW,1, eW,2, eW,3}, eW,i ∈ R3 defined as:

oW =

 0
0
0

 , eW,1 =

 1
0
0

 , eW,2 =

 0
1
0

 , eW,3 =

 0
0
1

 . (3.1)

Similarly, the acquisition coordinate Ck system associated with the k-th camera
is defined by an arbitrary origin ok ∈ R3 and the mutual orthonormal spanning
vectors {ek,1, ek,2, ek,3}, ek,i ∈ R3. The origin ok and spanning vectors ek,i define the
position and orientation of the k-th camera in world space as depicted in Fig. 3.1.

Based upon this representation, the transformation Tk from world space W to
the k-th camera space Ck can be expressed using homogeneous coordinates as:

Tk =

(
Rk tk
0 1

)−1

∈ R4×4, (3.2)
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Figure 3.1: The RI acquisition geometry as investigated in this thesis. Two local
camera coordinates systems C1 and C2 are embedded in the global world space W.
An arbitrary point xW defined in world space W is then perspectively projected
into the image domains Ωk associated with the k-th camera, yielding the pixel
indices i1 ∈ Ω1 and i2 ∈ Ω2, respectively.

where the translation tk ∈ R3 and rotation Rk ∈ SO3 are given as:

tk = ok, Rk =
(
ek,1 ek,2 ek,3

)
. (3.3)

Thus, for an arbitrary point xW ∈ R3 defined in world space W, the corresponding
representation xk ∈ R3 in the k-th local camera space Ck is given as:(

xk
1

)
= Tk

(
xW
1

)
. (3.4)

Now, let x̃W = (xW , 1)> ∈ R4 denote the homogeneous representation of xW in
world space and let the perspective projection of x̃W into the k-th image domain
Ωk ⊂ R2 be given by the pixel index ik ∈ Ωk. Mathematically, this projection is
expressed in homogeneous coordinates as:

ik =

(
ik,1
ik,2

)
=

(
ĩk,1/ĩk,3
ĩk,2/ĩk,3

)
x

 ĩk,1
ĩk,2
ĩk,3

 = ĩk = Ck
(

I 0
)

Tk x̃W , (3.5)

where x denotes the de-homogenization induced by perspective division. Fur-
ther, I ∈ R3×3 denotes the identity matrix and 0 ∈ R3 the zero vector. The camera
matrix Ck ∈ R3×3 is given as:

Ck =

 fk,1 0 ck,1
0 fk,2 ck,2
0 0 1

 , (3.6)

where fk,i and ck,i denote the camera’s focal length and principal point in w. r. t. the
i-th image axis ui, respectively. See Fig. 3.1 for an illustration. Note that Ck is only
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(a) Nearest Neighbor. (b) Bilinear. (c) Barycentric.

Figure 3.2: Interpolation strategies. The black dots denote depth samples obtained
from the RI sensor whereas the gray dot denotes an intermediate pixel index at
which the range image needs to be interpolated. White dots denote depth samples
that are used to interpolate the range image at the intermediate pixel index.

an approximation as the skew parameters are neglected for simplicity. For conve-
nience, for the remainder of this thesis, the perspective projection of a point xW in
world space into the k-th domain Ωk as described in Eq. (3.5) or the projection of a
point xk in the k-th camera space into Ωk will be denoted compactly by projection
operators Pk and PT

k defined as:

ik = Pk (xk) = PT
k (xW) . (3.7)

Though the mapping between multiple local coordinate systems Ck and the projec-
tion geometry described in this section is explicitly formulated for camera spaces
the same principles and linear transformations can be directly applied for other
local coordinate systems. This includes coordinate systems associated with medi-
cal imaging devices such as C-Arm CTs and LINACs or auxiliary data structures
such as signed distance functions that are investigated in Section 5.3.1 for implicit
surface representation in a multi-view RI scenario.

3.2 Data Structures and Data Representation

Besides the actual range measurements, modern RI sensors provide complemen-
tary information including hardware-based reliability indicators or photometric
data. Further, it is usually mandatory to reconstruct a 3-D surface from the ob-
served 1-D range measurements and auxiliary data structures such as confidence
maps encoding the reliability of measurements must be computed prior to further
RI data analysis.

This section covers the data structures and their representation used through-
out this thesis. However, note that though often available, photometric informa-
tion is not investigated further as it assumes no role in this thesis. Due to the
Charge-coupled Device (CCD) sensor matrix inherent to the RI sensors investi-
gated in this thesis, all data structures are defined as functions on the k-th RI do-
main Ωk sampled on a rectangular grid at N1×N2 indices i = (i1, i2). This implies
the need to interpolate the functions for continuous indices that do not coincide
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with discrete sampling positions. Due to the regular 2-D sampling grid topol-
ogy of Ωk, standard interpolation techniques such as nearest neighbor, bi-linear or
barycentric interpolation can be used, see Fig. 3.2 for an illustration. Further, this
regular grid topology allows to denote Ωr

k,i ⊂ Ωk as the local quadratic neighbor-
hood with radius r of pixel index i ∈ Ωk w. r. t. the image domain Ωk according
to:

Ωr
k,i =

{
i′ ∈ Ωk |max

(∣∣i′1 − i1
∣∣ ,
∣∣i′2 − i2

∣∣) ≤ r
}

. (3.8)

The number of pixels in this quadratic region is given as |Ωr
k,i| = (2r + 1)2.

3.2.1 Range Measurements and Reconstructed Surface

The RI sensors investigated in this thesis deliver dense 1-D depth or range mea-
surements. The terms range measurements and depth measurements are used
interchangeable in the remainder of this thesis. A range image associated with the
k-th camera is denoted as the function:

Rk : Ωk → R+, (3.9)

where in practice it is often differentiated between radial depth values R<
k and

orthogonal measurements R⊥k . For a point xW in world space the measurements
are defined according to:

R<
k

(
PT

k (xW)
)
= R<

k (Pk (xk)) = ‖xk‖2 , (3.10)

R⊥k
(

PT
k (xW)

)
= R⊥k (Pk (xk)) = (0, 0, 1)xk. (3.11)

The type of range measurement representation usually depends on the RI sensor,
however the two representations can be seamlessly converted into each other. A
detailed description is provided in Appendix C.

It is often desirable and for certain applications even mandatory to reconstruct
the 3-D scene that corresponds to the range measurements. Similar to the repre-
sentation of the actual range data in Eq. (3.9), the surface Sk corresponding to Rk
is denoted as a function or graph:

Sk : Ωk → Ψk, (3.12)

where the codomain Ψk ⊂ R3 holds the 3-D points in camera space as:

Sk (i) = ok,i +Rk (i) · vk,i. (3.13)

Here, ok,i ∈ R3 and vk,i ∈ R3 denote the origin and direction of the viewing ray as-
sociated with index i ∈ Ωk, respectively. For a pinhole camera model the viewing
ray origins ok,i are defined by the camera’s optical center, i. e. ok,i = ok, ∀i ∈ Ωk.
However, for virtual camera models as for example investigated in Section 5.4 of
this thesis, a generic reconstruction model covering multiple origins is mandatory.
The derivations of the viewing rays from the perspective geometry in RI and radial
or orthogonal depth measurements are detailed in Appendix C.
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Finally, surface normals nk,i ∈ N k : Ωk → R3 can be computed from Sk using
for example forward differences on the regular grid topology:

N k (i) =
(
Sk

(
i + (∆, 0)>

)
− Sk (i)

)
×
(
Sk

(
i + (0, ∆)>

)
− Sk (i)

)
, (3.14)

where ∆ ∈ R+ denotes an arbitrary but fixed offset. For completeness, note that
surface normals can be computed using backward or central differences, too.

3.2.2 Confidence Maps and Reliability Indicators

Encoding the reliability of range or surface measurements is a crucial issue for
RI data analysis. For example this allows to detect outliers or invalid data to be
restored or enhanced using pre-processing techniques as discussed in Chapter 4.
Further, confidence maps can be used as a prior probability for parameter esti-
mation such as the multi-view data fusion technique detailed in Chapter 5. For
notational clarity, the sensor index k is omitted in this section. A confidence map is
denoted as:

C : Ω→ [0, 1], (3.15)

where, C (i) = 1 implies maximum reliability and C (i) = 0 identifies invalid data
w. r. t. the measurement at position i. The confidence map C as used in this work is
generically composed of several reliability indicators C j : Ω→ [0, 1] as:

C (i) = ∏
j
C j (i) . (3.16)

In this work, the following four indicators have been identified as most important.
These indicators include clues that are directly obtained from a specific RI sensor
as well as generic maps that are independent of the particular RI device and are
computed from the RI measurements.

Sensor-based Confidence In the simplest form a confidence map can be obtained
from the RI sensor directly. This sensor-based confidence is simply defined as:

C1 (i) =
{

1 ifR (i) is valid w. r. t. the RI device
0 else . (3.17)

For example, ToF cameras usually provide an indicator to identify flying pixels
or saturated and overexposed sensor elements. For the Kinect device a binary
validity information can be obtained by checking the range data for zero values.

Acquisition Distance The range measurements itself is a reliability indicator as
depth and spatial resolution in range imaging deteriorates with the distance to
the captured object. For example, depth maps acquired by the Kinect device are
known to exhibit a degradation of depth resolution that is proportionally to the
squared distance [Smis 11]. The confidence accounting for the acquisition distance
is thus given as:

C2 (i) =
1

1 +
√
R(i)

, (3.18)

where the square root was chosen heuristically.
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Acquisition Direction As originally proposed by Curless and Levoy, the angle
between the surface normal and the viewing direction is a measure for uncertainty
due to degrading illumination for surface regions with normals that are nearly per-
pendicular to the viewing direction [Curl 96]. However, the discrepancy between
the surface normal and viewing ray is additionally a direct indicator for the ill-
conditioned surface sampling density imposed by the pinhole camera model of RI
sensors, i. e. the steeper the edge the lower the spatial sampling. The confidence
that accounts for the acquisition direction is given as:

C3 (i) =
(

v>i N (i)
)2

, (3.19)

where vi denotes the viewing ray and N (i) is the normal at index i, respectively.
Squaring the scalar product results in a rapid confidence decay for shallow acqui-
sition angles and was chosen heuristically.

Gradient of Depth Measurements Motivated by the work of Friske and Perry
[Fris 02], the gradient of the depth measurements R (i) is incorporated into the
composite confidence map. However, instead of using this information for cor-
recting depth measurements as originally proposed, the rationale here is that a
high gradient magnitude is a strong indicator for an object boundary. Depth mea-
surements at steep edges or scene discontinuities are often prone to errors such
as flying pixels in ToF-imaging [Kolb 10]. Consequently, the confidence w. r. t. the
gradient of depth measurements is given as:

C4 (i) =
1

1 + ‖∇R(i)‖2
, (3.20)

where ∇R : Ω → R2 denotes the gradient of R. In practice, ∇R is computed by
convolvingR with a suitable derivative kernel, cf. Chapter 4.

Combining these clues results in high scores for smooth surface regions that
are perpendicular to the viewing direction and close to the RI sensor, an illustra-
tion using a toy scene is depicted in Fig. 3.3. Note that a binary validity mask
M : Ω→ {0, 1} can be derived from the confidence map C by thresholding.

3.3 Synthetic Range Data By Sensor Simulation

For assessing the suitability and validating the correctness of RI processing mod-
ules it is often necessary to establish a ground truth reference baseline. In practice
this is a difficult task as the ideal 3-D object corresponding to the acquired range
measurements is in general not known. However, even if a ground truth baseline
of the observed 3-D object is available, for example using high precision tomo-
graphic scans or complementary range scans, manual interaction is often required
and calibration issues or registration steps to bring both coordinate systems in
congruence may introduce additional errors.

A different approach for baseline generation is based on simulated range data
obtained from rendering a virtual 3-D scene by using techniques known from com-
puter graphics. The underlying principle here is that the z-buffer representation
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(a) 3-D scene. (b) Confidence map C.

Figure 3.3: Toy scene illustrating a confidence map C. Three geometric primitives
are placed in front of a plane parallel to the RI sensor matrix. Confidence values
are mapped to [0, 1] and color coded with blue tones denoting low and red tones
representing high certainty. Note the effect of the different terms such as the low
confidence at scene discontinuities or the halo-like appearance of the background
plane due to the acquisition direction weighted by the distance to the RI sensor.

[Fole 90] of the 3-D scene resembles real-world orthogonal range measurements.
Further, the color buffer can be interpreted as complementary photometric data
and may be used to simulate the effect of specular reflections or material depen-
dent noise characteristics.

The majority of publications use the standard depth and color buffers includ-
ing the work of Köhler et al. [Kohl 13] or Keller et al. [Kell 13]. However, Keller
et al. also proposed sophisticated device specific simulation programs consisting
of multiple render passes [Kell 07, Kell 09].

3.4 RITK: The Range Imaging Toolkit - A Framework for
3-D Range Image Stream Processing

Regardless of the fundamentally different underlying physical sampling princi-
ples (cf. Section 2.2), the RI sensors investigated in this thesis provide dense and
metric surface information at real-time frame-rates. This poses a challenge in
terms of both throughput as well as low latency for subsequent data processing
algorithms. For example, off-the-shelf RI devices featuring Video Graphics Array
(VGA)-resolution (640× 480 px), a typical frame-rate of 30 Hz and single-precision
range data representation 32 bit/px generate a bandwidth of

640 px× 480 px · 32 bit/px · 30/s ∼ 300 Mbit/px.

By using the equivalent 3-D point cloud or surface representation this corresponds
to 900 Mbit/s and if complementary data such as photometric information is avail-
able the amount of data exceeds 1 Gbit/s. This requires a sophisticated software
architecture and data representation in order to comply with real-time constraints
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Figure 3.4: A screenshot of RITK used for respiratory motion analysis. RITK is
specifically designed for real-time scenarios and supports the integration of dedi-
cated hardware such as GPUs for high performance computing.

in clinical practice. In particular with regard to the integration of dedicated hard-
ware such as GPUs, innovative concepts for data pipeline propagation and mem-
ory management are inevitable to minimize the overhead of data transfers.

To cope with the general demands to the underlying software in RI-based respi-
ration analysis the Range Imaging Toolkit (RITK) was developed during the course
of this work [Wasz 11a]. RITK is an open source cross-platform and object oriented
toolkit written in C/C++ that is explicitly designed for real-time processing of mul-
tiple high-bandwidth RI data streams generated by modern RI devices. For this
purpose, RITK is conceived with performance in mind, supporting modern multi-
core CPU and many-core GPU architectures as well as providing an interface for
integrated circuits such as Field-programmable Gate Array (FPGA)

As real-time visualization of dynamic 3-D point clouds and surface data is
mandatory for immediate user feedback and scene understanding, RITK employs
a resource-efficient dedicated graphics module taking advantage of the interoper-
ability of general purpose computing on the GPU and rendering.

Besides these fundamental concepts, RITK supports both integration of var-
ious RI sensors as well as customized pre-processing pipelines at run-time and
provides a file format that enables recording and chronologically correct replay of
RI data sequences or static snapshots.

A screenshot of RITK deployed in a respiratory motion analysis scenario is
given in Fig. 3.4. However, besides respiration analysis, RITK was also success-
fully used in other range imaging applications including 3-D endoscopy [Haas 13b,
Haas 13a, Kohl 13] or 3-D scene reconstruction [Neum 11, Baue 13b].



C H A P T E R 4

Range Image Pre-Processing

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Pre-Processing Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Restoration of Invalid Depth Measurements . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Edge-preserving Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Temporal Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Raw range data directly obtained from RI sensors commonly exhibits a high noise
level and is further deteriorated by invalid measurements or systematic errors.
This chapter elaborates on RI data pre-processing techniques as a fundamental
prerequisite for practical applications. The methods investigated in this chapter
are based on preceding work for RI data pre-processing that had a focus on ToF
data enhancement in organ surface acquisition [Wasz 11b] and real-time computa-
tion using GPUs [Wasz 11c]. To account for the background of the thesis at hand,
this chapter explicitly investigates these pre-processing techniques in a dynamic
respiratory motion analysis scenario with strict real-time constraints and low la-
tency requirements.

4.1 Motivation

Regardless of the actual sensor technology, raw range data directly obtained from
RI sensors commonly exhibits a low signal-to-noise ratio (SNR) and is further de-
teriorated by invalid measurements or systematic errors. These issues often pre-
clude the raw RI data to be directly used for subsequent computation steps. In par-
ticular, this holds true for ToF cameras and off-the-shelf consumer devices such as
Microsoft Kinect. With ToF imaging, erroneous range values typically result from
overexposed and saturated sensor elements caused by specular reflections or the
flying pixels at sharp object boundaries [Kolb 10]. For the Kinect sensor difficul-
ties arise due to the ubiquitous discretization steps or when capturing reflective or
transparent objects [Smis 11]. Typical artifacts in RI are depicted in Fig. 4.1. With

27
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(a) Kinect data with RGB overlay. (b) ToF data with amplitude overlay.

Figure 4.1: Anthropomorphic phantom study illustrating the raw RI surface data
as obtained from Microsoft Kinect and a pmdtechnologies CamCube 3.0 ToF cam-
era [Wasz 11c]. For the Kinect note the ubiquitous discretization artifacts and the
invalid regions around the male’s chin and nose. For ToF imaging note the low
SNR throughout the scene.

regard to the high level of accuracy and reliability required for respiratory motion
analysis, RI pre-processing strategies thus constitute a mandatory prerequisite for
the applications addressed subsequently.

In general, all image enhancement techniques that have been proposed for im-
age processing or computer vision can be applied to the problem of RI data pre-
processing. However, due to real-time constraints in respiratory motion analysis,
RI pre-processing techniques must be tractable w. r. t. the computational complex-
ity and have to be eligible for porting on dedicated hardware for acceleration. As
a consequence, RI pre-processing in the context of this thesis is always a trade-off
between data enhancement and real-time capability.

4.2 Related Work

In image processing, edge-preserving filters for smoothing homogeneous regions
while preserving scene discontinuities are of special interest and importance. One
of the most popular and established methods is the bilateral filter [Auri, Toma 98].
Beyond its application for a multitude of conventional imaging modalities, it is
a common choice for RI data denoising [Lind 10]. The filter is straightforward to
implement, but exhibits a poor run-time performance due to its non-linear nature.
Recent algorithmic acceleration concepts have attempted to overcome the inherent
computational complexity by quantization and approximation techniques, how-
ever with the drawback of impairing accuracy [Pari 09, Pori 08, Yang 09, Yosh 10].
In contrast, the concept of guided filtering proposed by He et al. [He 10, He 13] is
based on a non-approximative algorithm with a computational complexity that is
independent of the filter kernel size. At the same time, it exhibits a comparable de-
gree of edge-preserving smoothing and does not suffer from gradient reversal ar-
tifacts. Besides algorithmic acceleration concepts, GPUs assume a prominent role
for high-performance data processing. Chen et al. demonstrated real-time frame
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rates for high-definition video processing by accelerating the bilateral grid on the
GPU [Chen 07]. Furthermore, GPUs were successfully deployed for accelerating
denoising and resolution enhancement of RI data, however, without explicitly ad-
dressing real-time constraints [Huhl 10].

Prior to denoising the data, the restoration of invalid measurements has to be
performed. In contrast to static defect pixels, these invalid measurements occur
unpredictable and can affect both an isolated pixel or connected local regions as
for example the depth shadows occurring at edge boundaries with the Kinect de-
vice [Camp 13]. In computer vision, a plurality of inpainting methods to correct
for such artifacts have been proposed. One simple yet effective technique is the
normalized convolution proposed by Knutson [Knut 93] that was also applied for
range imaging by Frank et al. [Fran 09], however, without explicitly addressing the
problem of restoring invalid measurements. More sophisticated methods rely on
variational formulations [Getr 12] or spectral domain analysis [Aach 01].

For range imaging, hybrid joint denoising and inpainting techniques have also
been proposed. For example, Silberman and Fergus use the cross bilateral filter
proposed by Paris and Durand [Pari 06] to compensate for both noise and missing
depth values [Silb 11]. Here, the inpainting is guided by the complementary pho-
tometric information provided by Kinect sensor. Further hybrid joint denoising
techniques have been proposed by Li et al. [Liu 12] and Camplani et al. [Camp 13]
for the Kinect and Huhle et al. for ToF data enhancement and super-resolution
[Huhl 10]. However, note that these approaches implicitly assume that there exists
a correlation between color and depth data which often does not hold true. An
example is a flat plane disturbed by glare-lights or that is textured with a checker-
board pattern. In practice, sophisticated techniques are required to account for this
issue as for example reported by Köhler et al. for hybrid 3-D endoscopy [Kohl 13].

Further, device and application specific denoising concepts have also been pro-
posed. For example Edeler et al. use prior noise information for ToF data enhance-
ment [Edel 10] and Bauer et al. proposed a framework for joint denoising and reg-
istration of RI data [Baue 12b].

4.3 Pre-Processing Pipeline Overview

The proposed pipeline setup is motivated by the observation that independent of
the underlying physical reason the raw range data is deteriorated by (i) missing
or invalid measurements, (ii) sensor noise or quantization issues and (iii) tem-
poral variations. Note that the correction of systematic errors like the so-called
wiggling effect for ToF imaging is not part of pre-processing. Consequently, the
proposed pipeline restores invalid or missing depth measurements as a first step
(Section 4.4). This renders an extra conditioning of invalid data unnecessary in
subsequent pre-processing steps. Subsequently, edge-preserving spatial filtering is
performed (Section 4.5) and as a finalizing step methods to account for temporal
noise are applied (Section 4.6).

This modular setup and subsequent processing was favored over a joint ap-
proach due to performance considerations. In fact, a combined spatial and tempo-
ral approach would resemble a conventional filter used in volumetric denoising,
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i. e. the first two dimensions are along the image whereas the third dimension ac-
counts for the temporal aspect. Depending on the chosen techniques, these filters
exhibit a high computational complexity, especially if they are not fully separa-
ble. In this regard, the explicit split between spatial and temporal filtering can be
interpreted as enforced separability along the temporal dimension.

The pre-processing techniques investigated in this section are purposely cho-
sen not to include any photometric data such as RGB color information. First, RI
devices are not guaranteed to feature complementary color information. Second,
the correlation of range data and color information that is inherently required for
joint approaches does not hold true in respiratory motion analysis. For a bare-
chested scenario, depending on gender and complexion, there potentially exists
a strong color gradient around the mamilla whereas the corresponding region in
the range data is approximately constant. Further, for the most part, the body
surface is rather texture-less which renders the benefit of incorporating additional
photometric information questionable.

For notational clarity, the sensor index k will be omitted throughout this chap-
ter. Unless stated otherwise, RI data pre-processing is always performed in the
2-D sampling domain Ω using the 1-D depth measurements R and not the corre-
sponding 3-D surface data S . The reason for this is twofold: First, the computa-
tional complexity of pre-processing algorithms operating on scalar valued depth
data is substantially lower compared to algorithms that use the vector-valued 3-D
point data. Second, processing the 3-D point data S may alter the corresponding
indices i ∈ Ω and thus implies the need to resample the range image R. Further,
respiratory motion analysis techniques may directly operate on the range data and
do not require a closed surface representation of the body as for example pursued
by Fayad et al. [Faya 11].

4.4 Restoration of Invalid Depth Measurements

In contrast to the continuous range and surface representation in Section 3.2, con-
ventional interpolation techniques that solely rely on adjacent range values are not
an option for restoration of invalid measurements. This is due to the fact that in-
valid or missing samples occur unpredictable and are often grouped to clusters as
previously illustrated in Fig. 4.1a. Invalid or erroneous measurements are identi-
fied by a binary mask M that can be derived from the confidence maps C intro-
duced in Section 3.2.2. As valid measurements are supposed to remain unchanged
the following generic model will be used for the remainder of this section. LetRR

denote the intermediate output of a restoration filter R. The final output data R̂R
is then given according to:

R̂R(i) =M (i)R (i) + (1−M (i))RR (i) . (4.1)

This model ensures that only invalid or missing range data are replaced by esti-
mated values. For convenience, missing range values will be referred to as invalid
measurements for the remainder of this thesis.
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4.4.1 Normalized Convolution

One method for restoring invalid depth measurements is to reconstruct an un-
known value R (i) with M (i) = 0 by a weighted summation of neighboring
valid samplesR

(
i′
)

forming the set:{
R
(
i′
)
| i′ ∈ Ωr

i ∧M
(
i′
)
6= 0

}
. (4.2)

Giving a high priority to nearby pixels, this weighted averaging is closely related
to the concept of Normalized Convolution (NC) that was originally proposed by
Knutsson and Westing [Knut 93]. Normalized Convolution in the context of the the-
sis at hand builds upon the observation that invalid measurements are smeared
across valid regions when naively convolving the erroneous range image R with
a low-pass kernel. The concept of Normalized Convolution accounts for this issue
by separating the data into a signal part and a so-called certainty part encoding the
reliability of a pixel value or measurement. Using the mask imageM as certainty
function, this is formulated for the intermediate filter outputRNC for Eq. (4.1) as:

RNC(i) =
∑i′∈Ωr

i
a(i, i′)M(i′) R(i′)

∑i′∈Ωr
i

a(i, i′)M(i′)
, (4.3)

where the so-called applicability function a(i, i′) accounts for the spatial proximity
in Ωr

i . In this work, a Gaussian kernel function is used for the applicability function:

a(i, i′) ∝ exp

(
−‖i− i′‖2

2
σ2

s

)
, (4.4)

where the parameter σs controls the spatial similarity or proximity. Regarding the
original intention to reconstruct missing values based on neighboring valid mea-
surements, Eq. (4.3) can be interpreted as a convex combination of valid samples
with the denominator accounting for a proper normalization.

An important theoretical property of the restoration of invalid measurements
employing the concept of Normalized Convolution from Eq. (4.3) in conjunction with
the Gaussian applicability function in Eq. (4.4) lies in the interpretation as a convo-
lution (∗) using a linear shift-invariant Gaussian kernel G:

RNC (i) =
{G ∗ (M◦R)} (i)
{G ∗M} (i) , (4.5)

where ◦ denotes the element-wise multiplication or Hadamard product. This prop-
erty allows to decrease the algorithmic complexity of Normalized Convolution, in
the naive formulation from Eq. (4.3) being O

(
N1N2r2), in three ways: First, by ex-

ploiting the separability of Gaussian filtering the complexity can be decreased to
O
(

N1N2r
)
. The second option of acceleration is to exploit the convolution theo-

rem for linear shift-invariant kernels. This theorem states that the convolution of a
signal in the time or spatial domain with a linear shift-invariant kernel such as the
Gaussian equals a multiplication in the frequency domain. For the denominator
in Eq. (4.5) this can be expressed as:

G ∗M = DFT−1 (DFT (G ∗M)) = DFT−1 (DFT (G) ◦DFT (M)) , (4.6)
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where DFT denotes the discrete Fourier transform (DFT) operator. By using this
formulation, the complexity of the algorithm is decoupled from the kernel size r
and by using the fast Fourier transform (FFT) is O

(
N1N2 (log N1 + log N2)

)
. Third,

by using the recursive definition for Gaussian filtering as proposed by Deriche
[Deri 90] the computational complexity of Normalized Convolution can be decou-
pled from the kernel radius r of the local neighborhood Ωr

i , i. e. the complexity
becomes O

(
N1N2

)
.

4.4.2 Spectral Deconvolution

Though the restoration of invalid measurements using Normalized Convolution fea-
tures an excellent computational complexity, the method has some drawbacks.
First, for large defect regions, the assumption that missing values can be properly
reconstructed by a weighted summation of surrounding valid measurements does
not necessarily hold true. This is due to an over-smoothing implied by a large
Gaussian kernel that ultimately results in the loss of salient image features such
as edges. Second, the restoration of invalid measurements using Normalized Con-
volution is a spatial method that does not account for local image features such
as repetitive texture patterns or intensity gradients. To cope with these issues, an
alternative method for the reconstruction of invalid pixels based on spectral de-
convolution, originally proposed by Aaach and Metzler for defect interpolation in
digital radiography [Aach 01], is investigated in this section.

The principle of this spectral deconvolution (SD) method is to model the raw
and erroneous image R as an element-wise multiplication of the ideal sought im-
age RSD with the binary mask image M containing the validity information. In
the Fourier domain this multiplication equals a convolution and the governing
reconstruction model can thus be expressed as:

R = RSD ◦M ≡ FR =
1

N1N2
FRSD ∗ FM, (4.7)

where FR, FRSD and FM denote the frequency spectra of R, RSD andM, respec-
tively. The effect of the validity mask M is then removed by deconvolving its
spectrum FM from the spectrum of the corrupted range image FR.

The individual spectral coefficients FRSD (I) ∈ C with I ∈ N2 denoting an
index in the frequency domain are iteratively estimated in a sense that minimizes
the error E(t) between the erroneous input FR (I) and the t-th estimate for the
sought spectrum as implied by the convolution model from Eq. (4.7) as:

E(t) = ∑
I

∣∣∣F(t)
E (I)

∣∣∣2 = ∑
I

∣∣∣∣F(t−1)
E (I)− 1

N1N2

{
∆F(t)
RSD
∗ FM

}
(I)
∣∣∣∣2 , (4.8)

where ∆F(t)
RSD

denotes the t-th update term and the initial error spectrum F(0)
E is

initialized with the spectrum of the erroneous range measurements, i. e. :

F(0)
E (I) = FR (I) , ∀I. (4.9)
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The iterative definition of the error spectrum F(t)
E follows directly from Eq. (4.8). In

each iteration t, a single position I(t) and the corresponding pair of spectral coef-

ficients F(t−1)
RSD

(
I(t)
)

and its complex conjugate F(t−1)
RSD

(
I(t)
)∗

= F(t−1)
RSD

(
N − I(t)

)
with N = (N1, N2) ∈N2 are considered. Here, the symmetry of the spectra caused
by the real-valued input functions is used. The position I(t) must be chosen to
yield the maximum error reduction w. r. t. the error energy from Eq. (4.8). A sim-
plified approach to save computational expense outlined in [Aach 01] is to select
I(t) according to:

I(t) = argmax
Î

∣∣∣F(t−1)
E

(
Î
)∣∣∣ . (4.10)

The spectral coefficients of the t-th update term ∆F(t)
RSD

(I) are then given by:

∆F(t)
RSD

(I) = F(t−1)
RSD

(
I(t)
)

δ
(

I − I(t)
)
+ F(t−1)
RSD

(
I(t)
)∗

δ
(

I − N + I(t)
)

, (4.11)

where

δ (I) =
{

1 if I = 0
0 else . (4.12)

The unknown spectral coefficient F(t−1)
RSD

(
I(t)
)

is estimated by computing the zero-
crossing of the partial derivative of the error energy function from Eq. (4.8) w. r. t. the

unknown coefficient F(t−1)
RSD

(
I(t)
)

itself and its complex conjugate F(t−1)
RSD

(
I(t)
)∗

,
yielding:

F(t−1)
RSD

(
I(t)
)
= N1N2 ·

F(t−1)
E

(
I(t)
)

FM (0)− F(t−1)
E

(
I(t)
)∗

FM
(

2I(t)
)

|FM (0)|2 +
∣∣FM (2I(t)

)∣∣2 . (4.13)

Finally, the t-th estimate for the sought deconvolved spectrum is accumulated ac-
cording to:

F(t)
RSD

(I) = F(t−1)
RR

(I) + ∆F(t)
RSD

(I) , F(0)
RSD

(I) = 0. (4.14)

In practice, the algorithm terminates if the number of iterations exceeds a user
defined threshold. Clearly, the number of iterations also depends on the scene to
reconstruct. Whereas for smooth data few Fourier coefficients are sufficient, the
entire spectrum must be estimated for scenes that exhibit strong gradients and
complex non-repetitive patterns.

Though this spectral deconvolution method exhibits a strong theoretical foun-
dation its practical usage for a real-time capable restoration of invalid depth mea-
surements in range imaging is very cumbersome. This is due to the inherent com-
putational complexity using imaginary values, its iterative nature and, as the most
important aspect, the missing spatial context of the Fourier transform.

Applying the method to the entire image is permitted as this would imply that
information throughout the whole image are used for estimating an invalid mea-
surement. Note that this is in contrast to the localized properties of the Normal-
ized Convolution method from the previous section. To preserve spatial locality
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ΩER4
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(a) Connected Components.
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ΩER2

ΩER3

ΩER4

(b) Clustering.

ΩER1 ΩER2

ΩER3 ΩER3

(c) Uniform Grid.

Figure 4.2: Embedding regions for invalid measurements. A strategy based on
connected components in general yields a large number of regions. In contrast,
clustering approaches decrease the number of regions, however, potentially split-
ting connected components and merging distant regions. A uniform grid with
overlapping patches is a trade-off between spatial locality and number of regions.

for the spectral deconvolution method the restoration technique must be applied
to multiple localized and potentially overlapping rectangular regions ΩER ⊂ Ω
embedding the invalid measurements similar to the Short-time Fourier transform.
For identifying these embedding regions three different strategies can be used, see
Fig. 4.2 for an illustration. First, the labels as obtained from a connected compo-
nent analysis [Suzu 03] applied to the invalid measurements directly define the
embedding regions. Second, clustering techniques such as k-means [Duda 00] can
be used to obtain the embedding regions. As the third option, a uniform grid
covering the whole image can be used to embed invalid measurements. How-
ever, spectral deconvolution is only performed for regions that actually contain
invalid measurements. Compared to embedding regions derived from connected
component analysis and clustering, both being potentially expensive operations in
terms of computational complexity, a uniform grid has the advantage that solely
a check for invalid measurements inside a grid cell is required. By using so-called
Integral Images or Summed Area Tables [Viol 01, Crow 84] this can be done with a
computational complexity that does not depend on the size of the grid cells. Let
IM : Ω → N+ denote the Integral Image representation of the mask image M.
The number of invalid pixels inside an embedding region ΩER centered at index
i = (i1, i2) and size (s1, s2) is then given as:

|{i |i ∈ ΩER ∧M (i) = 0}| =
= IM (i1 − 1, i2 − 1) + IM (i1 + s1, i2 + s2)

− IM (i1 − 1, i2 + s2)− IM (i1 + s1, i2 − 1) . (4.15)

Clearly, this formulation is independent of the size of the embedding region and
exhibits a constant computational complexity O

(
1
)
.

In fact, a formulation of the spectral deconvolution method based on a fixed
uniform grid was identified as the most feasible approach regarding run-time con-
straints. The reasons therefore is that a fixed grid allows for an efficient GPU-based
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simultaneous batched computation of the Fourier transform. Further, the compu-
tation of each patch can be accelerated using aggressive loop-unrolling strategies.

4.5 Edge-preserving Denoising

Edge-preserving filtering is one of the most important tasks in computer vision
and image processing. Such denoising techniques can be interpreted as conven-
tional low-pass filters with an edge-stopping functionality that attenuates the filter
kernel weights when the difference between pixel values is large. In particular in
range image pre-processing edge-preserving denoising methods are valuable tools
as they allow to preserve salient topographic features on surfaces.

4.5.1 Bilateral Filtering

The bilateral filter [Toma 98] is a very popular and established edge preserving
spatial denoising filter. The general problem statement for bilateral filtering does
not rely on a specific underlying low-pass filter model as, for instance, mean or
median filtering, or Gaussian blurring. However, the latter is most commonly
used which allows to express the bilateral filter (BF) as:

RBF (i) =
∑i′∈Ωr

i
c
(
i, i′
)

s
(
R (i) ,R

(
i′
))
R
(
i′
)

∑i′∈Ωr
i

c
(
i, i′
)

s
(
R (i) ,R

(
i′
)) . (4.16)

The spatial closeness c
(
i, i′
)

and the range similarity s
(
R (i) ,R

(
i′
))

that accounts
for the edge-preserving nature of bilateral filtering are given as:

c
(
i, i′
)

∝ exp

(
−‖i− i′‖2

2
σ2

c

)
, (4.17)

s
(
R (i) ,R

(
i′
))

∝ exp

(
−
|R (i)−R

(
i′
)
|2

σ2
s

)
, (4.18)

where σc and σs control the spatial closeness and range similarity, respectively.
Note that the bilateral filter is related to the concept of normalized convolu-

tion from Eq. (4.3) in a sense that the spatial closeness c
(
i, i′
)

equals the applica-
bility function a(i, i′) and the range similarity s

(
R (i) ,R

(
i′
))

can be interpreted
as a translation-variant certainty function. This translation-variance implies that
bilateral filtering is computationally expensive and its complexity is O

(
N1N2r2)

where r denotes the radius of the local neighborhood Ωr
i . This high computation

complexity led to the development of edge-preserving denoising techniques that
expose a constant complexity w. r. t. the radius of the local region. Here, the guided
image filter that will be investigated in the following section is a promising candi-
date due to its non-approximative algorithm.
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4.5.2 Guided Filtering

The concept of guided image filtering was proposed by He et al. [He 10, He 13].
The filter has a non-approximative algorithm for edge-preserving denoising. This
is in contrast to recent acceleration strategies for the bilateral filter that rely on
quantization methods [Pari 09, Pori 08] and thus may impair accuracy.

The basic idea of guided filtering (GF) is to express the filter output RGF as a
linear transform of a so-called guidance image G : Ω→ R in the local neighborhood
Ωr

i of a pixel i:
RGF

(
i′
)
= aΩr

i
G
(
i′
)
+ bΩr

i
, ∀i′ ∈ Ωr

i . (4.19)

Here, aΩr
i

and bΩr
i

are linear coefficients that are constant in Ωr
i . These coefficients

are obtained by constraining the filter outputRGF to be similar to the input image
R. With regard to the local linear model from Eq. (4.19) this allows to define a cost
function that quantifies the difference between the outputRGF and the inputR in
the neighborhood Ωr

i as:

J
(

aΩr
i
, bΩr

i

)
= ∑

i′∈Ωi

(
1
2
(
RGF

(
i′
)
−R

(
i′
))2

+
1
2

εa2
Ωr

i

)
= ∑

i′∈Ωi

(
1
2

(
aΩr

i
G
(
i′
)
+ bΩr

i
−R

(
i′
))2

+
1
2

εa2
Ωr

i

)
, (4.20)

where ε is a regularization parameter that is commonly used in ridge-regression or
Tikhonov regularization. Consequently, the coefficients (aΩr

i
, bΩr

i
) must minimize the

cost function J (aΩr
i
, bΩr

i
). The coefficients (aΩr

i
, bΩr

i
) can be obtained by equating

the corresponding partial derivatives of Eq. (4.20) to zero, yielding:

aΩr
i
=

1
|Ωr

i |
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i
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, (4.21)

bΩr
i
=

1
|Ωr

i |
∑

i′∈Ωr
i

R
(
i′
)
− aΩr

i

1
|Ωr

i |
∑

i′∈Ωr
i

G
(
i′
)

. (4.22)

By interpreting the input R and guidance image G as uniformly distributed dis-
crete random variables, the coefficients (aΩr

i
, bΩr

i
) can be written in a more compact

form as:

aΩr
i
=

EΩr
i
[RG]− EΩr

i
[R]EΩr

i
[G]

EΩr
i
[GG]− EΩr

i
[G]EΩr

i
[G] + ε

=
CovΩr

i
[R, G]

VarΩr
i
[G] + ε

, (4.23)

bΩi = EΩr
i
[R]− aΩr

i
EΩr

i
[G] , (4.24)

where EΩr
i
[·], VarΩr

i
[·] and CovΩr

i
[·] denote the expectation value, variance and

covariance of a uniformly distributed discrete random variable in the local neigh-
borhood Ωr

i , respectively.
The edge-preserving characteristic of the guided filter can now be understood

as follows when considering that the guidance image equals the range image,
i. e. G = R, which is the common approach for denoising single channel images.
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Figure 4.3: Numerical issues (error in [mm]) with mean filtering using single-
precision standard 2-D integral images (left) and an implementation using sep-
arable 1-D cumulative sums (right) compared to ground truth results computed
with double-precision [Wasz 11c]. The test scene shows a plane at a distance of
1 m in front of the camera.

A scene discontinuity such as an edge causes a high variance inside the region Ωr
i

and from Eq. (4.23) it follows that the coefficient aΩr
i

tends towards one with the
tendency controlled by ε. In turn, bΩi as derived in Eq. (4.24) evaluates to zero.
From the linear model in Eq. (4.19) it follows that no filtering is performed and the
edge is eventually preserved. In contrast, smooth regions by definition exhibit a
variance of range values close to zero and the coefficient aΩr

i
will be close to zero,

too. Thus, from Eq. (4.24) it follows that bΩi is the expectation value or average
of the data inside the neighborhood Ωr

i and the filter output will be set to these
values due to the linear model in Eq. (4.19).

The constant run-time of O
(

N1N2
)

independent from the chosen radius is due
to the fact that the expectation values from Eqs. (4.23) and (4.24) can be computed
using simple mean or box filters for which constant run-time implementations
are known. One of the most prominent approaches are based on Integral Images
or Summed Area Tables [Viol 01, Crow 84] that were previously used in this thesis
for constant-time detection of missing data in arbitrary image regions as outlined
Eq. (4.15). For mean filtering in the context of guided filtering, the same theoreti-
cal principles apply, however, care has to be taken w. r. t. numerical accuracy when
using single-precision floating-point numbers as outlined in prior work [Wasz 11c]
and illustrated in Fig. 4.3. Due to the accumulative nature of integral images and
the limited accuracy and range inherent to single-precision floating-point num-
bers errors may be introduced. This effect can be reduced to a certain degree by
exploiting the separability of mean filtering, i. e. to perform two successive 1-D
convolutions that can be computed efficiently using a parallel prefix sum tech-
nique [Harr 07]. However, the best result is obtained when using double-precision
floating-point numbers. Unfortunately, this is not always an option for differ-
ent hardware architectures. For example, certain GPUs may not support double-
precision computations at all. Further, the number of floating point operations per
second using double-precision arithmetic are considerably smaller than for single-
precision and the increased bandwidth load with double-precision may decrease
performance as outlined in Section 2.3.
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4.6 Temporal Denoising

Temporal denoising (TD) techniques refer to multi-frame methods that generate
the filter output by computing a weighted average given a series of T temporally
successive frames

{
R0, . . . ,RT−1

}
and associated weights

{
w0, . . . , wT−1} as:

RTD (i) =
T−1

∑
t=0

wt
iRt (i) ,

T−1

∑
t=0

wt
i = 1. (4.25)

The superscript denotes the relative temporal shift with 0 denoting the instanta-
neous and T − 1 the ’oldest’ considered frame.

4.6.1 Conventional Temporal Averaging

The most simple form of temporal denoising which will be referred to as conven-
tional temporal averaging (CTA) assumes a pixel-independent and equal weight wt

for the range image frames Rt in the generic denoising model from Eq. (4.25),
i. e. wt

i = 1/T, ∀t∧ ∀i ∈ Ω. This translates to computing the pixel-wise arithmetic
mean given the set of T successive frames as:

RCTA (i) =
1
T

T−1

∑
t=0
Rt (i) . (4.26)

A naive implementation of this denoising technique has a computational complex-
ity that, besides the number of pixels, depends on the number of temporal frames,
i. e. O

(
N1N2T

)
. However, by using a recursive formulation based on a moving

average, the computational complexity can be decoupled from the number of tem-
poral frames. Let Rt

CTA denote the output of conventional temporal denoising at
relative temporal shift t. This allows to rewrite Eq. (4.26) in a recursive manner as:

Rt
CTA (i) = Rt−1

CTA (i) +Rt (i)−Rt−T (i) . (4.27)

Thus, the computational complexity is O
(

N1N2
)
.

Though exhibiting an ideal computational complexity, conventional temporal
averaging is of no relevance for this work as it can only be used for static scenes.
This problem is addressed in the following section.

4.6.2 Bilateral Temporal Denoising

Conventional temporal denoising has the drawback of introducing blurring ar-
tifacts in dynamic scenes. This is due to the fact that it is inherently assumed
that range values Rt (i) along the temporal dimension only differ due to sensor
noise and not due to different contents and changing appearance of objects in the
captured scene. For example, when capturing the thorax of a subject, respiratory
motion induced body deformations will result in changes in the corresponding
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depth measurements. By choosing the number T of successive frames inappropri-
ately large, the effect of respiratory motion will be smeared out by conventional
temporal averaging.

To cope with this issue, a constrained temporal averaging technique based on
the previously introduced spatial bilateral filter from Section 4.5.1 is pursued. The
basic idea is that range gradients along the temporal dimension are typical for
dynamic scenes and that averaging across theses edges falsifies the output. The
bilateral temporal denoising (BTD) method as referred to as in this thesis computes
the weights wt

i based on the temporal distance as well as the similarity of depth
measurements:

wt
i = c (t) s

(
Rt (i)−R0 (i)

)
, (4.28)

where R0 denotes the instantaneous RI frame. The temporal distance c (t) ac-
counts for the elapsed time between the instantaneous frame and the frame ac-
quired at time t and allows for non-uniform weights in the generic temporal de-
noising model from Eq. (4.25) that decay according to the ’age’ of frames Rt. In
contrast, the similarity of depth measurements s

(
Rt (i)−R0 (i)

)
does not ac-

count for the ’age’ of frames but for the distance of corresponding depth mea-
surements Rt (i). For the denoising model in Eq. (4.25) this allows to penalize or
exclude range measurements for the purpose of dynamic scene preservation. In
this thesis, both the temporal distance and the similarity of depth measurements
are given by a Gaussian function, i. e. :

c (t) ∝ exp
(
− t2

σ2
t

)
, s (d) ∝ exp

(
− d2

σ2
d

)
, (4.29)

with parameters σt and σd to control the temporal extent and level of dynamic
scene preservation, respectively. The filter definition can thus be stated as:

RBTD (i) =
∑T−1

t=0 R
t (i) c (t) s

(
Rt (i)−R0 (i)

)
∑T−1

t=0 c (t) s
(
Rt (i)−R0 (i)

) . (4.30)

Due to the fact that the depth measurement similarity s
(
Rt (i)−R0 (i)

)
is trans-

lation variant it follows that the complexity of bilateral temporal averaging is
O
(

N1N2T
)
.

4.7 Experiments and Results

Experiments for investigating the suitability of the proposed pre-processing tech-
niques divide into a quantitative evaluation using a synthetic respiration phan-
tom and a detailed performance study. Both experiments have a strong focus on
assessing the fitness of the investigated pre-processing techniques in a dynamic
respiratory motion scenario where both accuracy as well as low run-times consti-
tute crucial issues. Qualitative results for real RI data are purposely omitted in this
chapter as they overlap with the evaluation of high coverage body surface models
in Section 5.5.2.
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(a) b = −1.0. (b) b = 0.0. (c) b = 1.0.

(d) Anatomical plausible simulated respiration sequence. The sequence divides into
phases of breath hold (white), inhale (light gray) and exhale (dark gray). Note that exhale
phases are shorter than inhale phases which is typical for the human respiration system.

Figure 4.4: The virtual test environment for quantitative evaluation. The first row
depicts different states of the respiratory motion model based on the NCAT phan-
tom. Color coded is the local respiration magnitude controlled by one global
model parameter b ∈ [−1,+1]. The bottom row shows a synthetically gener-
ated respiration sequence. Aforementioned surfaces correspond to the first inhale
phase at frame indices 30, 55 and 90, respectively.

4.7.1 Quantitative Results Using a Respiration Phantom

The pre-processing techniques discussed in this chapter are first assessed for accu-
racy in a dynamic respiratory motion scenario based on synthetic RI data gener-
ated from a respiration phantom. The purpose of this virtual test environment is
to establish the respiration phantom as a reliable ground truth for assessing vari-
ous pre-processing techniques and their parameterizations. Further, synthetic data
allows to study these parameters in the absences of device-specific error sources
such as sub-surfaces scattering or multi-path reflections with ToF imaging.

Experimental Setup

The respiration model used for quantitative evaluation is derived from the Nurbs-
based Cardiac-torso (NCAT) phantom [Sega 01] and has one free parameter b that
basically corresponds to the respiration mgnitude. Different respiratory motion
states from fully exhale to fully inhale are depicted in Figs. 4.4a to 4.4c. The NCAT
motion model consists of approximately 6.4× 103 vertices that are organized on
an unstructured grid and triangulated to form a continuous surface. An investiga-
tion on motion models including the NCAT phantom is beyond the scope of this
chapter but is detailed in Chapter 6 of this thesis.
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Sensor and scene specifications A virtual RI sensor (cf. Section 3.3) with a reso-
lution of 640× 480 pixels and vertical field of view of 45° was then placed above
the NCAT phantom at an acquisition distance of approximately 800 mm. Respi-
ratory motion was simulated for two inhale/exhale cycles by manually adjusting
the model parameter b in an anatomically plausible manner while continuously
rendering the motion model at ∼30 Hz to obtain synthetic ground truth range
data RGT. This setup corresponds to a typical respiratory motion scenario with
a single RI sensor. The resulting sequence of motion model parameters consisting
of 270 frames and extending approximately 10 s is illustrated in Fig. 4.4d. Note
the anatomical plausibility for both the total duration of a sequence consisting of
two respiration cycles and smaller duration of exhale phases compared to inhale
phases which is typical for the human respiration system.

Noise and data corruption To simulate realistic RI measurements, the ground
truth range data RGT was corrupted on a per-pixel basis to form the test data
R. As the first step, missing measurements were simulated by setting the cor-
responding confidence values C (i) and range measurements R (i) to zero. The
decision for a measurement to be invalid or reliable was derived from a manually
generated defect probability map defined on the RI domain Ω that is evaluated
on a per-frame basis. In the second step the test data was corrupted by additive
noise that consists of two components. The first component is modeled by Perlin
noise which is a coherent noise function commonly used for procedural textures
[Perl 85]. The motivation for using Perlin noise is that conventionally employed
synthetic noise sampled from a zero-centered normal distribution is a simplifying
assumption that does not reflect the complex noise characteristics of RI data. For
example, pixel-wise corruptions induced by normal distributed noise are not spa-
tially related which is a poor assumption for common RI limitations such as clus-
tered glare light reflections or material properties. In contrast, to a certain degree,
Perlin noise allows for such clustered or localized disturbances in the range data.
For the experiments, the Perlin noise was parameterized with a frequency of 64,
octave count of 8 and a persistence of 0.5. However, as Perlin noise is a static noise
function, a second noise component sampled from a normal distribution with zero
mean and variances of σ2

N = 1 and σ2
N = 2 is used to simulate temporal variations

in the range acquisition process. As a finalizing step, quantization artifacts were
introduced by using integer arithmetic according to:

R′ (i) = bR (i) /∆Q + 0.5c · ∆Q. (4.31)

This corresponds to a quantization step size of roughly ∆Q mm. The investigated
quantization steps of ∆Q = 2 and ∆Q = 4 are suitable approximation regarding
a typical RI sensor setup and the Kinect device that exhibits quantization steps of
∼ 0.9 mm at 0.6 m and 2.8 mm at 1.0 m acquisition distance, respectively [Smis 11].
An illustration of the different noise and quantization artifacts for the corrupted
synthetic RI data is given in Fig. 4.5.

Error assessment Quantitative results are then computed for each frame on a
per-pixel error ei defined as the Euclidean distances between surfaces points of
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(a) Missing range data. (b) Missing range data with
noise.

(c) Missing data with noise
and quantization artifacts.

Figure 4.5: Corrupted synthetic RI data on a subdomain Ω̃ ⊂ Ω. The top row
shows the surface S corresponding to the corrupted range data R, the bottom
row depicts the color coded error between S and the ground truth surface SGT
computed from RGT. Note the missing data in the thorax region (left), complex
noise patterns that do not follow a normal distribution (middle) and ubiquitous
staircase artifacts due to quantization (right).

the ground truth 3-D data SGT (i) corresponding toRGT (i) and the corrupted but
filtered 3-D data SF (i) corresponding toRF (i), i. e. :

ei = ‖SGT(i)− SF(i)‖2 . (4.32)

For a compact representation, the first (Q1), second (Q2) and third (Q3) quartiles
of the pixel-wise errors ei are computed over a subdomain Ω̃ ⊂ Ω. This domain
corresponds to the segmented and cropped NCAT motion model in the RI surface
data SGT, see Fig. 4.5 for an illustration of the subdomain. The subdomain cov-
ering the model for evaluation is used to account for a potential bias caused by a
static and flat background and unavoidable systematic errors at the sharp bound-
ary between the motion model and the background. To keep computation times
manageable, the subdomain was further sub-sampled with a factor of 8 which re-
sulted in approximately 1.5× 103 uniformly distributed points for which the Qi
errors are reported.

This evaluation scheme of Euclidean distances on the body surface was chosen
as the objective nature of metric range imaging that actually describes a surface in
3-D is appropriately reflected. In contrast, other popular metrics like the structural
similarity, though being objective, are mainly designed to account for the subjective
human visual perception in conventional imaging [Wang 04].
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Statistical significance To test for statistical significant differences, errors ob-
tained from different approaches or parameterizations are assessed against each
other by using a left-tailed Wilcoxon signed-rank test [Rams 93] across the absolute
values of the frame-wise differences in the Q1, Q2 and Q3 errors. Thus, the null
hypothesis H0 is that the median difference in Qi errors between two experiments
A and B across all frames f equals a threshold δ whereas the alternate hypothesis
H1 is that the median difference is smaller than that threshold, i. e. :

H0 : median
∀ f

{∣∣∣QA, f
i −QB, f

i

∣∣∣} = δ (4.33)

H1 : median
∀ f

{∣∣∣QA, f
i −QB, f

i

∣∣∣} ≤ δ. (4.34)

The Wilcoxon signed-rank test was chosen due to two reasons. First, the individ-
ual samples are not statistical independent as they correspond to the same mo-
tion model parameter b. Second, a normal distribution of differences in the Qi
reconstruction errors cannot be assumed safely. Clearly, the choice for the differ-
ence level is crucial for a sound evaluation. Whereas a threshold close to zero is
most accurate in a sense that assesses both approaches for equality, in practice one
is usually interested in tolerating a certain error for the sake of faster computa-
tion or re-usage of filters. Typical thresholds used for evaluation in this chapter
are δ = 0.1 mm or δ = 0.01 mm both being considerably smaller than the synthetic
noise level in this chapter or the noise characteristics of real world RI sensors.

Results

The results are divided into different paragraphs in order to investigate the pre-
processing techniques w. r. t. their ability to account for the different noise and cor-
ruption characteristics introduced in the previous section, i. e. missing data, spatial
or temporal noise and quantization artifacts.

Restoration of invalid measurements The first experiment is concerned with the
problem of restoring missing range measurements. For normalized convolution a
rather large kernel radius of r = 10 and σ = 7 was heuristically chosen. This
kernel covers a region of 21× 21 pixels and thus embeds the defects used in this
experiment and typical invalid regions in real-life measurements. For normalized
convolution a fixed grid composed of patches with size 32× 32 pixels and cover-
ing the domain Ω was chosen. The patches mutually overlap with 8 pixel in each
direction and a Welch window function [Welc 67] is applied to account for the in-
herent periodicity assumption of the Fourier transform. The number of iterations
was set to 50 which was found sufficient to reconstruct a smooth function such as
implied by the observed body surface.

The error graph for both methods across the motion model sequence is de-
picted in Fig. 4.6. Conspicuous is the superior performance of the spectral de-
convolution method with a median error of 0.03 mm compared to 0.11 mm with
normalized convolution. However, both error scales are below real-life noise lev-
els and thus suitable for restoring missing range values. In particular, this holds
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(a) Normalized convolution. (b) Spectral deconvolution.

Figure 4.6: Comparison of normalized convolution and spectral deconvolution
for restoring missing range measurements. Red denotes the median (Q2), blue
represent the 25th (Q1) and 75th (Q3) error percentiles and gray extends to the
most extreme distances not considered as outliers.

true when considering that only a very small part of the body surface is affected.
Due to its comparable accuracy but superior performance in terms of run-time as
shown later in Section 4.7.2, normalized convolution will be used as base-line in
the following experiments.

Edge-preserving filtering Results for range data with missing values and that is
additionally corrupted by noise are shown in Fig. 4.7. Without any pre-processing,
the data differs substantially from the ground truth with a median error of >1.0 mm,
cf. Figs. 4.7a and 4.7d. Further, the graphs show no relation between the error and
the respiration state. In fact, no significant correlation (ρ ≥ 0.01) was found be-
tween the distances and both the respiration magnitude and the respiration state
i. e. inhale/exhale or breath hold. The respiration state was quantified as the abso-
lute value of the derivative of the model parameters w. r. t. the frame index.

For assessing the denoising capabilities of edge-preserving filtering a heuristi-
cally determined parameterization was chosen. This resulted in σr = 20, σs = 5 for
the bilateral filter and ε = 400 for the guided filter. The window size for both filters
was chosen as r = 7 thus containing (2 · 7 + 1)2 = 225 elements. This configura-
tion also assures that both filters are comparable [He 10]. As expected, applying
edge-preserving denoising techniques as depicted in Figs. 4.7b and 4.7e decreases
the surface error considerably for both noise levels and yields a median error of
∼ 0.2mm. However, the graphs reveal a dependence of the error on the respira-
tion state. While this effect is hardy visible for bilateral filtering, the dependency is
prominent for guided filtering. In fact, the experiments reveal statistical significant
(ρ ≤ 0.01) Pearson correlation coefficients (PCCs) of 0.74, 0.79 and 0.87 between the
model parameter b and the Q1, Q2 and Q3 errors, respectively. This effect is due
the fact that the applied edge-preserving filtering techniques are parameterized to
give priority to denoising across the body surface and thus slightly smooth across
the extreme sharp edge between the range image foreground corresponding to the
motion model and the background, see Fig. 4.8 for the error distribution.
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(a) σ2
N = 1.0. (b) σ2

N = 1.0 with bilateral filter. (c) σ2
N = 1.0 with guided filter.

(d) σ2
N = 2.0. (e) σ2

N = 2.0 with bilateral filter. (f) σ2
N = 2.0 with guided filter.

Figure 4.7: Pre-processing results for varying temporal noise levels σ2
N and different edge-preserving denoising filters. Note the

different error scale of the raw (left column) and denoised (middle and right column) data. Further note the distinct correlation
between the error metric and the respiration state for guided filtering (right column).
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(a) Bilateral filtering. (b) Guided filtering.

Figure 4.8: Comparison of bilateral filtering (left) and guided filtering (right) for
edge-preserving denoising. Color coded is the error metric ‖SGT(i)− SF(i)‖2.
Note the larger error of guided filtering at the surface boundaries. The same effect
was observed in preceding work [Wasz 11b].

The larger error of RI denoising using guided filtering compared to conventional
bilateral filtering at steep edges was also observed in previous work [Wasz 11b].
In this regard, note that only the evaluation is performed on a segmented and
cropped model whereas filtering techniques always operate on the entire range
data. Due to its slightly more stable performance, the bilateral filtering will be
considered as the baseline for evaluating the effect of temporal averaging in the
next paragraphs.

Temporal Denoising Assessing the temporal denoising capability is done for the
bilateral temporal averaging filter, only. The reasons for this is that the conven-
tional temporal averaging filter can be interpreted as a special case of the bilateral
version with σd → ∞, cf. Eqs. (4.28) and (4.29). As shown in the experiments,
such high values are prohibitive for a respiratory motion scenario, thus obviating
the need for an evaluation of the conventional averaging strategy in this chapter.
However, temporal averaging is a fundamental feature of the multi-view fusion
technique that is proposed in Chapter 5 and the effect of conventional temporal av-
eraging will be investigated in the corresponding evaluation part in Section 5.5.1.

Results for bilateral temporal averaging with and without preceding edge pre-
serving spatial denoising are depicted in Fig. 4.9. For this experiment the temporal
noise level was fixed to σN = 1.0. Without preceding edge-preserving denoising,
the median error is ∼ 0.2 mm thus corresponding to the error scale of the data
without temporal noise, cf. Fig. 4.7a. In fact, at least a temporal variance of σd = 0.5
for the bilateral temporal averaging filter is necessary to produce any visible effect.
For smaller values, there is no temporal averaging at all due to the high noise level
that causes corruptions in the range data that are interpreted as gradients along
the temporal dimension that need to be preserved. In contrast, the temporal gra-
dients with σd = 0.5 are related to the changing respiration state and not to noise.
This is depicted in Fig. 4.9a where the error decreases successively in steady respi-
ration states and immediately changes back to the base level for inhale and exhale
phases, respectively. However, the decrease of < 0.05 mm in the median error and
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(a) σBTA = 0.5. (b) σBTA = 0.25. (c) σBTA = 0.125.

(d) σBTA = 0.5 with spatial bilateral filter. (e) σBTA = 0.25 with spatial bilateral filter. (f) σBTA = 0.125 with spatial bilateral filter.

Figure 4.9: Pre-processing results with bilateral temporal averaging (BTA). For all experiments the temporal noise level was
fixed to σN = 1.0. The top row shows results for temporal bilateral averaging only whereas the bottom row depicts results with
preceding edge preserving denoising using a spatial bilateral filter with σs = 5 and σr = 20. Note the strong influence of changing
respiration state on the Euclidean distance error.
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(a) σN = 1.0, ∆Q = 2. (b) σ2
N = 2.0, ∆Q = 4.

(c) σ2
N = 1.0, ∆Q = 2 with bilateral filter. (d) σ2

N = 2.0, ∆Q = 4 with bilateral filter.

Figure 4.10: Influence of different noise levels and quantization artifacts for spatial
bilateral filtering. For heavy corruptions caused by quantization the filter shows a
high denoising capability with distance errors comparable to the noise-only case
shown in Figs. 4.7b and 4.7e.

steady phases is small compared to the median error drop-off from ∼ 1.0 mm to
∼ 0.2 mm for spatial denoising.

Applying a bilateral filter as preceding step reveals a crucial issue with tem-
poral averaging, see Figs. 4.9d to 4.9f. Though for steady respiration states the
error again successively decreases there are tremendous fluctuations for chang-
ing respiration states, especially for larger values of σBTA as depicted in Fig. 4.9d.
The reason for this lies in the fact that after edge-preserving denoising the differ-
ence in the local respiration magnitude is not classified as an edge to be preserved
anymore. Eventually, this results in an erroneous averaging of distinct respiration
states and a high deviation from the ground-truth data. By decreasing the range
similarity parameter σ2

BTA this effect can be lessened to a certain degree as depicted
Fig. 4.9f. However, this is naturally accompanied by a loss in denoising capability
for steady respiration states.

Quantization artifacts The error graphs for the proposed pre-processing tech-
niques for different noise levels and quantization steps are depicted in Fig. 4.10.
For the raw data as shown in Figs. 4.10a and 4.10b a median error of ∼ 1.1 mm
and ∼ 1.5 mm for medium and strong artifacts was determined, respectively. Es-
pecially for a quantization step size of ∆Q = 4 the error is considerably higher
compared to the data that was solely corrupted by noise and median error of
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∼ 1.0 mm, cf. Figs. 4.7a and 4.7d. In contrast, the error of the filtered data as out-
lined in Figs. 4.10c and 4.10d is very similar to the noise only graphs in Figs. 4.7b
and 4.7e with median errors of∼ 0.2 mm in all cases. In fact, independent from the
noise level and quantization steps, no statistical significant difference (δ = 0.1 mm,
ρ ≤ 0.01) was found for the Q1,2,3 errors between the fully corrupted data and its
counterpart that misses quantization artifacts. For a more rigorous threshold of
δ = 0.01mm only the Q3 error for a noise level of σ2

N = 2 and ∆Q = 4 showed a
significant difference (ρ ≤ 0.01).

4.7.2 Performance Study

The last part of the experiments conducted in this chapter covers the run-time per-
formance of the investigated pre-processing techniques. In order to provide a fair
and comprehensive evaluation of a real-life RI pre-processing pipeline, the per-
formance study is also concerned with the basic data preparation steps including
the ubiquitously required transfer of data from the host (CPU) to device (GPU)
memory, the 3-D surface reconstruction from Eq. (3.13) and optional confidence
computation as described in Section 3.2.2.

Experimental Setup

In order to establish run-times that are independent from the actual scene, restora-
tion of missing data was applied for the entire image. In practice, these methods
can be restricted to certain pixels or regions that actually contain invalid measure-
ments, cf. the constant time approach to identify regions with missing values from
Eq. (4.15). The reported run-times can thus be understood as an upper bound-
ary for the execution time. Naturally, the remaining pre-processing techniques for
edge-preserving and temporal denoising are executed on the entire RI data. For
details on the hardware and software setup as well as time measurement princi-
ples the reader is referred to Appendix B.

Results

GPU run-times for a typical pre-processing pipeline are given in Table 4.1. As
outlined in the experiments, normalized convolution for restoring missing mea-
surements is preferred to spectral deconvolution as it yields a better run-time. In
fact, spectral deconvolution is an extremely challenging method for porting on
the GPU and a highly optimized implementation yielded run-times in the scale of
14 ms for a uniform grid consisting of 300 patches with a size of 32× 32 pixels and
50 iterations, each. Though such run-times seem acceptable at a first glance note
that by assuming a typical RI sensor frame-rate of 30 Hz the restoration of a few
invalid measurements would account for approximately 50% of the available time
between frames. In contrast, normalized convolution shows an excellent run-time
performance of 0.28 ms even for a rather large kernel with radius of r = 10. This
low run-time is due to the separability of convolution reducing the number of op-
erations from a quadratic complexity of (2 · 10 + 1)2 = 441 to 2 · (2 · 10 + 1) = 42.
Further, separable filters can be implemented very efficiently on the GPU taking
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Step GPU time [ms] Relative time [%]
Host/device transfer 0.10± 0.01 4.76
Normalized convolution (r = 10) 0.28± 0.02 13.3
Bilateral spatial filtering (r = 7) 0.91± 0.01 43.3
Bilateral temporal denoising (T = 30) 0.50± 0.02 23.8
Confidence computation 0.23± 0.02 11.0
3-D Surface reconstruction 0.08± 0.01 3.81
Total 2.10± 0.09 100

Table 4.1: GPU run-times for a typical pre-processing pipeline and image size of
Ω ∈ R640×480 as investigated in this thesis. Edge-preserving and temporal de-
noising account for the most time, however, inconspicuous but ubiquitous steps
such as data transfer from the main memory to the device or the final 3-D surface
reconstruction cannot be neglected.

advantage of both the massive parallelism as well as the hierarchical memory ar-
chitecture, see Appendix A for exemplary implementation details.

In contrast, bilateral spatial denoising as a non-separable filtering technique ex-
hibits a higher run-time with a smaller kernel radius compared to the normal-
ized convolution method. Interestingly, bilateral temporal denoising yields an even
higher run-time w. r. t. the number of elements that are computed for each pixel.
The spatial bilateral filter has the full quadratic complexity, i. e. (2 · 7 + 1)2 = 225
elements, whereas the temporal version only has 30 elements. The reasons for the
time discrepancy lies in the GPU memory architecture. Whereas global memory
loads can be decreased by sharing data among neighboring pixels as implemented
in the spatial filter, this is inherently not an option for the temporal variant as data
is not re-used across neighboring elements. Further, the total amount of data that
needs to be loaded for the temporal variant is directly related to the number of
frames and thus is 30 times higher. This result underlines the importance of a
proper implementation of GPU programs not only regarding parallel processing
principles but also w. r. t. the memory architecture.

The last part of the performance evaluation is concerned with the run-times
of bilateral and guided filtering as two competing strategies for edge-preserving
denoising. A plot of run-times against the kernel radii is given in Fig. 4.11. Clearly
visible are the quadratic complexity of bilateral filtering and the constant complex-
ity of guided filtering. However, for small to medium kernel radii the bilateral
filter provides a much better performance and the break-even-point for guided fil-
tering is rather high with radius r = 8. The reasons for this lies in the complex
infrastructure and the workflow of guided filtering that, among others, consists
of multiples intermediate results and several box-filters (cf. Eqs. (4.21) and (4.22))
that require integral image representations for constant time computation. All this
comes along with a non-neglectable overhead caused by GPU kernel invocations
and global memory access.
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Figure 4.11: Run-time comparison of the bilateral and the guided filter for an im-
age size of 640× 480 pixels and varying kernel radius. Note the quadratic com-
plexity for bilateral filtering in contrast to the constant complexity for guided filter-
ing. However, for small radii bilateral filter exhibits a performance as no complex
infrastructure in terms of intermediate image representations is required.

4.8 Discussion and Conclusion

This chapter was concerned with real-time capable pre-processing techniques for
RI data enhancement in a dynamic respiratory motion scenario. The results con-
firm that pre-processing is a valuable step to account for noise and artifacts that
may be introduced during the range sampling process.

For regions of missing data that are typical with range imaging in respiratory
motion monitoring, normalized convolution has shown to be a simple yet effective
strategy for restoring measurements, however with a median error of 0.11 mm
being inferior to a more complex approach based on spectral deconvolution that
yields an error of 0.03 mm. However, these results cannot be transferred directly
to other RI applications. This is at least partially due to the simple shape and
appearance of the human thorax and in particular of the respiration phantom that
does not feature salient topographic landmarks.

In this regard, it must be also questioned if edge-preserving denoising tech-
niques, though definitely not being harming, are necessary at all for enhancing
RI-based body surface data. In fact, the parameterizations that where determined
heuristically to yield the best noise reduction across the examined surface part
comes along with a denoising characteristic for both the bilateral and guided filter
that resembles those of conventional filters. Yet, for very steep edges such as the
transition of the body to the background an edge-preserving functionality is still
present with bilateral filtering being slightly superior to guided filtering. The con-
clusion of the conducted experiments is that for moderate temporal noise levels
with variance in the scale of σN = 1.0 and quantization steps up to 4 mm edge-
preserving denoising methods are a valuable tool towards recovering the original
data with a residual error in the scale of ∼ 0.6 mm. Though exhibiting a slightly
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different performance at sharp boundaries, bilateral and guided filtering both are
appropriate techniques for edge-preserving denoising.

Whereas the benefit of restoring invalid measurements and edge-preserving
spatial filtering is invariably underlined by the experiments, the gain of using tem-
poral denoising methods is not self-evident. On the one hand temporal denoising
yields more stable surface data with a slightly decreased surface error for steady
respiration states. On the other hand, serious artifacts are introduced for chang-
ing respiration states. Incorporating a functionality to detect changing respiration
states as pursued with bilateral temporal averaging only partially accounts for this
issue. Especially, for higher noise levels and slightly changing respiration magni-
tude, there is no means to separate per-pixel variations in range measurements
from respiratory motion and temporal noise. In either case, the parameter must be
chosen carefully and applying a temporal denoising technique must be considered
as a trade-off between a stable and steady surface and an accurate reconstruction.

Regarding real-time constraints that are imposed by a respiratory motion sce-
nario GPU architectures have proven to be suitable. A typical pre-processing
pipeline as proposed in this chapter executes in approximately 2 ms on off-the-
shelf consumer hardware, thus easily coping with the frame-rates of modern RI
sensors. An interesting result here is that constant time methods for edge-preserving
denoising such as guided filtering do not necessarily exhibit a lower run-time com-
pared to the conventional bilateral filter when porting to GPU architectures. This is
due to the complex nature of constant time methods in contrast to the brute-force
computation principle for bilateral filtering. Further, the reconstruction and perfor-
mance results for restoring missing range information using normalized convo-
lution or spectral deconvolution demonstrate that in general a trade-off between
accuracy on the one hand and run-time on the other hand has to be made. In this
regard it must be mentioned that, though often assumed in the image-processing
community, GPU implementations per se do not necessarily yield run-times to
satisfy time constraints as imposed by practical demands.
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Patient monitoring using one single RI sensor is often not possible in image guided
interventions due to a variety of reasons such as occlusion by clinical devices, staff
or the acquisition geometry itself. This chapter elaborates on a multi-sensor setup
and investigates a volumetric method for fusing RI streams from different sensors
in conjunction with a ray-casting technique for patient body surface reconstruc-
tion. The investigated methods were first proposed for respiratory motion analysis
in preceding work [Wasz 13, Wasz 16].

5.1 Motivation

For respiratory motion analysis in image guided interventions a camera setup us-
ing one single RI sensor is often not feasible. First and foremost, a single static
camera is not capable to provide a complete body coverage. This is mandatory in
fractionated radiation therapy for arbitrary beam directions and different patients.
Further, the incomplete body coverage implied by a single sensor may render a
model-based respiratory motion analysis ill-conditioned [Wasz 13] and contradicts
the principle that surface-based respiration surrogates should be acquired densely
and spread across the entire body, cf. Section 2.1.1. Second, due to self-occlusions
of the patient by the body surface itself, staff and clinical devices such as C-Arm
CT systems or the LINAC with potentially attached multi-leaf collimators, a con-
tinuous coverage of the target position cannot be guaranteed. Yet, even if there
are no blocking objects, small reconstruction frustums, shallow acquisition angles
and a large working distance may deteriorate the quality of RI data. Multi-camera
setups help to remedy these issues by providing data from multiple viewpoints
which allows to address occlusions or body coverage issues and to enable super-
resolution techniques for data enhancement.

53
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Dedicated multi-sensor systems have been proposed in fractionated radiation
therapy by Lindl et al. [Lind 13] or Price et al. [Pric 12] where the latter system
features fast acquisition rates of > 20 Hz, thus allowing for high temporal reso-
lution respiratory motion analysis. A commercially available system with multi-
camera functionality is the AlignRT system that is used in several clinical facilities
throughout the world. See Section 2.2.2 for a more detailed description of these
systems. However, regardless of the underlying range imaging principle, these ex-
isting multi-sensor systems yet do not provide a unifying fusion of RI data streams
from multiple sensors. This is a crucial drawback for patient alignment and res-
piratory motion analysis algorithms. For example, the marker-less patient setup
systems proposed by Bauer et al. [Baue 11] or Placht et al. [Plac 12] rely on surface
features that encode the local topography of the body surface. For non-fused RI
surfaces this would imply to reconstruct the local neighborhood from the disjunct
or overlapping multiple surfaces at border regions. Further, data redundancy also
requires to explicitly select the most reliable measurement. As an important prac-
tical issue, explicit handling of junctions and data redundancy also hampers the
deployment of high-performance algorithms. The reason for this is that 3-D points
being close to each other in world space may be stored in different memory regions
due to the separate data structures obtained from the individual RI sensors. For
GPUs this hinders an effective texture cache usage or coalesced memory access to
exploit the maximum available bandwidth for data transfer between off-chip and
on-chip memory, cf. the GPU architecture introduction in Section 2.3.1.

In this chapter a real-time and modality-independent framework for high cov-
erage body surface reconstruction from multiple fused RI sensors is investigated.
The proposed method employs a volumetric range data fusion approach encoding
the patient body surface in an implicit manner. Based upon this implicit represen-
tation, an explicit surface reconstruction technique that utilizes a novel manifold
ray casting technique tailored to the human anatomy is described. As a unique
characteristic compared to existing approaches, the presented method inherently
features a high body surface coverage and a surface topology that allows for a very
efficient computation of local neighborhoods. These features facilitate the usage of
algorithms designed to cope with real-time constraints.

5.2 Related Work

The fusion of point cloud data, such as delivered by RI sensors, that is acquired
from multiple view-points is a widely investigated problem in geometric model-
ing. Generally, the problem can be divided into either a pure fusion and consolida-
tion of the multiple point cloud data [Paul 02, Rusi 02, Lind 13, Pric 12], or a unified
surface reconstruction from this 3-D data [Hopp 92, Curl 96, Kazh 06]. A pure con-
solidation of the point data is sufficient for geometry processing algorithms that
solely require a discrete set of 3-D point data, whereas surface reconstruction tech-
niques are mandatory if the algorithm is based on a continuous surface represen-
tation.

The standard strategy for simple merging of point cloud data is based on clus-
tering techniques [Paul 02]. The governing principle here is to subdivide the bound-
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ing box that contains all different scans into grid cells. All 3-D points that map to
the same cell are then replaced by a common representative. The representative is
typically derived by simple averaging all points within the cell [Rusi 02, Lind 13].
The subdivision itself is commonly performed using a fixed grid with equal size
[Rusi 02, Lind 13], however, due to memory constraints space partitioning strate-
gies like kd-tress have also been proposed [Pric 12]. Note that this consolidation
strategy only yields a discrete set of 3-D points and no continuous surface repre-
sentation. However, this is sufficient for algorithms that solely require a discrete
set of 3-D point data. For example, the RI based patient alignment systems pro-
posed by Price et al. and Lindl et al. [Pric 12, Lind 13] only use a subset of the
available point data to compute the transformation of the subject to the reference
position. In this context, a consolidation strategy using grids in conjunction with
a thinning or a space partitioning strategy can also be interpreted as acceleration
strategies to reduce the computational complexity.

For surface reconstruction techniques, as an intermediate step, an implicit sur-
face representation is required. The most prominent representations here are based
on signed distance functions (SDFs) that encode the signed distance of a 3-D point
to the surface [Hopp 92, Curl 96, Kazh 06] or occupancy grids in which each grid cell
holds the probability of being occupied [Pirk 11]. Here, it is worth noting that it is
neither required to compute the exact SDF nor it is required to compute the SDF
over the whole domain embedding the 3-D point clouds. For example, Hoppe
et al. [Hopp 92] proposed to compute the SDF only for a small region near the
original discrete set of point data. As the exact surface is not known but only mea-
sured by a discrete set of 3-D samples, the SDF is approximated by the distance
of a point to a tangent plane computed from local samples. Another example is
based on approximated projective distance transforms as proposed by Curless and
Levoy [Curl 96]. Here, the SDF is computed by approximating the point to surface
distance using a fast projective data association scheme. Further, the SDF is trun-
cated and clamped to avoid inference issues with potentially opposing acquisition
directions that would falsify the implicit surface representation. To address the
problem of high memory requirements of implicit representations based on regu-
lar grids, recent approaches employ space partitioning techniques based on octrees
[Zeng 12] or point-based fusion frameworks [Kell 13].

Regardless of the actual implicit surface representation, these reconstruction
techniques perform a level set based surface extraction as the finalizing step. For
SDFs the sought level set is given by the zero crossing whereas for probabilis-
tic occupancy grid one seeks for the iso-level 0.5 identifying the maximum pos-
terior probability [Pirk 11] which, by using the concept of log odds corresponds
to the zero level of an SDF in the interval [−1,+1]. For iso-level extraction the
well known marching cubes algorithm [Lore 87] or marching tetraheda techniques
[Tree 99] are popular. Though efficient GPU-based implementations have been
introduced for these techniques, reconstruction times of ∼ 150 ms for a volume
size of 512× 512× 70 as reported in [Cizn 12] are beyond real-time constraints im-
posed by a respiratory motion analysis scenario. A different approach for extract-
ing the sought surface is based on ray casting techniques [Park 98]. In this context
a noteworthy approach is the Kinect Fusion framework [Newc 11, Izad 11] which
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Figure 5.1: The embedding domain Γ of a signed distance functionD as an implicit
surface representation in world space W, cf. the multi-view acquisition geometry
depicted in Fig. 3.1.

aims at live scene reconstruction using a hand-held device. By utilizing sophis-
ticated GPU implementations for SDF data integration as well as explicit surface
reconstruction from ray casting the SDF, run-times of < 30 ms for a volume size of
5123 using current off-the-shelf consumer hardware have been reported.

5.3 Implicit Surface Representation Using Signed Dis-
tance Transforms

As the first step in a multi-sensor scenario, the simultaneously acquired range data
from the individual RI sensors must be consolidated and fused to a unifying rep-
resentation. Due to real-time constraints in RI based patient respiratory motion
monitoring, an efficient fusion method is mandatory. For this purpose, a variant
of approximative SDFs originally proposed by Curless and Levoy [Curl 96] is in-
vestigated in this section. To cope with the special demand w. r. t. simultaneously
acquired RI data from multiple sensors, this section elaborates on joint simultane-
ous multi-view fusion and sequential temporal SDF integration.

An implicit surface representations encodes the surface Sk with the zero level
set of its SDF DSk and an associated weighting functionWSk :

DSk (xΓ) : Γ→ [−1,+1], (5.1)
WSk (xΓ) : Γ→ [0, 1]. (5.2)

Here, Γ ⊂ R3 describes the domain embedding the SDF and weighting function.
Similar to the local RI camera coordinate systems Ck introduced in Eq. (3.4) the SDF
DSk has an associated transformation TΓ ∈ R4×4 that describes the mapping from
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a point xW ∈ R3 given in global world space W to a point xΓ ∈ Γ given in the local
SDF coordinate system as:(

xΓ
1

)
= TΓ

(
xW
1

)
=

(
RΓ tΓ
0 1

)−1( xW
1

)
, (5.3)

with rotation RΓ ∈ SO3 and translation tΓ ∈ R3 similarly to the camera space from
Eq. (3.3) defined as tΓ = oΓ and RΓ =

(
e1

Γ e2
Γ e3

Γ
)
. The origin oΓ and spanning

vectors ei
Γ describe the actual embedding of Γ in the world space W, see Fig. 5.1

for an illustration.

5.3.1 Approximated Point-to-Surface Distance

Computing the exact signed distance transform of a surface is a computationally
expensive task. Instead, conventional SDFs are approximated by using a projec-
tive data association scheme. Exploiting the projective acquisition geometry of RI
sensors, the signed distance of a point xΓ ∈ Γ to the surface Sk is computed from
the range measurementsR as:

d (xΓ,Sk) = ‖Sk (Pk (xk))‖2 − ‖xk‖2 = R<
k (Pk (xk))− ‖xk‖2 . (5.4)

By using a further approximation step this distance can be expressed in terms of
orthogonal range measurements in the proximity of the surface Sk as:

d (xΓ,Sk) ≈ (0, 0, 1) Sk (Pk (xk))− (0, 0, 1) xk = R⊥k (Pk (xk))− (0, 0, 1) xk. (5.5)

In both versions the projection operator Pk : R3 → Ωk is associated with the k-th RI
sensor, cf. Eq. (3.7), and the transformation from xΓ defined in the SDF embedding
domain Γ to a point xk defined in the k-th camera space is given as:(

xk
1

)
= TkT−1

Γ

(
xΓ
1

)
. (5.6)

The projective distances d (xΓ,Sk) from Eqs. (5.4) and (5.5) can be interpreted as
computing the difference between the point xk as seen from the sensor and the
actual measured surface point Sk (Pk (xk)) along the viewing ray implied by the
projection Pk (xk). Note that positions xk that are located between the sensor and
the surface Sk (Pk (xk)) are assigned a positive distance whereas positions behind
the surface obtain a negative value. A support region controlled by ε is defined
around the surface Sk to account for the approximative nature of d (xΓ,Sk) and
uncertainty of range measurements w. r. t. the noise characteristics of the RI sensor.
For points x outside the support region, i. e. d (xΓ,Sk) > +ε ∨ d (xΓ,Sk) < −ε,
the corresponding distances are clamped according to:

η (d) = min (ε, |d|) sign (d) . (5.7)

The effect of clamping can be understood as assigning a rough information for
a point x being outside the support interval somewhere in front or behind the
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surface Sk as seen from the k-th sensor. In contrast, points x inside the support
region are assumed to provide a reliable distance. From Eqs. (5.5) and (5.7) the
ε-normalized approximated SDF DSk w. r. t. the surface Sk is given as:

DSk (xΓ) =
1
ε

η (d (xΓ,Sk)) . (5.8)

5.3.2 Weighting of Approximative Distances

Attached to DSk is the weighting function WSk that encodes the applicability of
approximative point-to-surface distances as derived in Eq. (5.8). Following the
original work by Curless and Levoy [Curl 96], the weighting component W (xΓ)
comprises two concepts: First, the weight reflects the certainty of surface mea-
surements xi ∈ Ψk. This information is encoded in the confidence map Ck from
Eq. (3.16). Recall that the confidence map Ck yields high scores for smooth sur-
faces that are perpendicular to the viewing direction and close to the k-th RI sen-
sor. This is of great importance for multi-view surface acquisitions of one single
object as the scans in general partially overlap. Thus, an individual surface point
is in general captured from different distances and viewing angles.

Now, instead of naively fusing the multiple acquisitions into the common im-
plicit model from Section 5.3.1 these acquisition parameters are taken from the
confidence maps which eventually allows for a weighted fusion as later outlined
in Eq. (5.16) and Eq. (5.17) giving priority to reliable surface measurements. As the
second component, the weighting term incorporates a distance term w (d) that pe-
nalizes high distances d (xΓ,Sk) for points that are not in proximity to the surface
Sk. In this work, the distance related weighting term performs a smoothly decay-
ing weighting in front and a sharp cut-off behind the surface w. r. t. the support
region ε according to:

w (d) =

{ 1
1+| dε |

2 if d ≥ −ε

0 else
. (5.9)

The rational behind the distance component w (d) is to prevent interference when
fusing approximative SDFs that have been computed from substantially different
view points. The original work by Curless and Levoy [Curl 96] used a linear at-
tenuation of weights followed by a sharp truncation when the distance exceeds a
certain threshold. However, in a dynamic scenario such as RI-based respiratory
motion analysis a sharp truncation in front of the surface is obstructive. This is
due to the fact that in a dynamic scenario a position in space may be occupied in
one frame (e. g. fully inhale) but empty in a subsequent frame (e. g. fully exhale).
Fusing the corresponding SDFs with a rigorous weight cut off yields an implicit
representation that, due to discarding of free space information, erroneously con-
tains the old surface that is not present anymore as well as the new correct surface.
In contrast, smoothly attenuating weighting coefficients in front of the surface al-
low to incorporate the information of non-occupancy into the SDF fusion.
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Finally, the combined weighting termWSk (xΓ) is given by the product of the
confidence data and the distance term as:

WSk (xΓ) = Ck

(
PT

k (xΓ)
)

w (d (xΓ,Sk)) . (5.10)

5.3.3 Fusion of Multiple Distance Transforms

Without loss of generality, let {(D(t),W (t))} denote a set of distance and weighting
functions that were acquired both at different time and from varying view points.
As outlined in [Curl 96], under certain assumptions, the fused representation D̂ is
given in a least squares sense according to:

D̂ (xΓ) =
∑T

t=1W (t) (xΓ)D(t) (xΓ)

∑T
t=1W (t) (xΓ)

. (5.11)

Practically, it is not feasible to keep track of all SDFs and a memory efficient yet
equivalent approach for the least squares estimate D̂ (xΓ) is given by a recursive
formulation of Eq. (5.11):

D̂(t)
(xΓ) =

D̂(t−1)
(xΓ) Ŵ

(t−1)
(xΓ) +W (t) (xΓ)D(t) (xΓ)

Ŵ (t)
(xΓ)

, (5.12)

Ŵ (t)
(xΓ) = Ŵ

(t−1)
(xΓ) +W (t) (xΓ) , (5.13)

with the initial estimates given by D̂(0)
= Ŵ (0)

= 0. Indeed, this is a valid for-
mulation regarding a static model reconstruction problem targeted in the original
work with a limited number of RI scans [Curl 96]. However, this approach is not
feasible for a dynamic scenario with rapidly streaming RI data. The reason for this
is that the weighted average in Eq. (5.12) and Eq. (5.13) is solely data driven and
does not account for the data acquisition protocol. Eventually, this mixes up data
being captured simultaneously in a multi-sensor setup and data that were acquired
sequentially in a dynamic setting.

In this work, the temporal nature of fusion is explicitly addressed by introduc-
ing an additional weighting factor α ∈ [0, 1] that controls the averaging of suc-
cessive frames and thus accounts for the level of dynamic scene preservation. Ex-
tending Eq. (5.12) and Eq. (5.13) by the temporal weighting factor α consequently
reads as:

D̂(t)
(xΓ) =

(1− α)Ŵ (t−1)
(xΓ) D̂

(t−1)
(xΓ) + αW (t) (xΓ)D(t) (xΓ)

Ŵ (t)
(xΓ)

, (5.14)

Ŵ (t)
(xΓ) = (1− α)Ŵ (t−1)

(xΓ) + αW (t) (xΓ) . (5.15)

For static scenes one is usually interested in a smooth reconstruction by averaging
multiple subsequent frames. This is controlled by small α values. In contrast,
for dynamic scenes priority should be given to the instantaneous measurements.
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(a) Pinhole Ray Casting. (b) Cylindrical Manifold Ray Casting.

Figure 5.2: Explicit surface reconstruction by ray casting an SDF D [Wasz 13]. The
left figure depicts an approach based on a pinhole camera model and the right fig-
ure illustrates manifold ray casting based on a cylindrically shaped virtual sensor
plane. Note that with manifold ray casting a 180° coverage patient surface model
can be reconstructed.

Thus, depending on the application, α must be chosen close to 1. As the final step,
the instantaneous SDF composed of D(t) (xΓ) andW (t) (xΓ) at time t is separately
modeled to account for the simultaneous acquisition of RI surfaces in a multi-sensor
scenario.

Given, the approximated point-to-surface distance from Eq. (5.8) and the defi-
nition of the total weight from Eq. (5.10), the instantaneous fused SDF is is modeled
by a convex combination of the instantaneous multi-view measurements:

D(t) (xΓ) =
1

W (t) (xΓ)

K

∑
k=1
WSk (xΓ)DSk (xΓ) , (5.16)

W (t) (xΓ) =
K

∑
k=1
WSk (xΓ) . (5.17)

Clearly, the convex coefficients are solely data driven and thus this fusion ap-
proach effectively accounts for the simultaneous acquisition property present in a
multi-sensor setup.

5.4 Explicit Surface Reconstruction by Ray Casting

The distance transform D encodes the body surface in an implicit manner via the
zero level set of approximated point to surface distances. However, the major-
ity of surface processing or analysis techniques require an explicit representation,
i. e. vertices and edges. Though explicit surface reconstruction techniques such as
marching cubes algorithm [Lore 87] can be used for zero level extraction, real-time
run-times are hard to achieve. A different approach for extracting the sought sur-
face is based on ray casting techniques [Park 98] that, given run-times of ∼ 5 ms
for a volume size of 5123 voxels [Newc 11], have proven to satisfy real-time con-
straints. The basic idea pursued in surface reconstruction using ray casting is to
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simulate a certain camera model and the range sampling process. In the following
sections the most popular ray casting technique based on a pinhole camera model
and a dedicated approach tailored to respiratory motion analysis are investigated.

5.4.1 Pinhole Camera Ray Casting

Analogous to the RI acquisition geometry and 3-D surface reconstruction for real-
life sensors detailed in Section 3.1 and Section 3.2, respectively, let Ω< denote the
virtual sampling domain for pinhole ray casting. Consequently, the virtual range
image is denoted by R< : Ω< → R+ and the corresponding surface is denoted
by S< : Ω< → Ψ< with Ψ< ⊂ R3. Per pixel viewing rays v<,i with i ∈ Ω< are
computed from the camera matrix, cf. Eq. (9.6) in Appendix C. Further, without
loss of generality, the optical center is set to the canonical origin, i. e. o = (0, 0, 0)>.
Now, the problem of explicit surface reconstruction from the distance transform is
to compute the virtual range image R< and the surface S< such that for a 1-D
depth measurement the corresponding reconstructed 3-D point coincides with the
zero level of the distance transform D:

D (S< (i)) = D (o+R< (i) · v<,i)
!
= 0, ∀i ∈ Ω<. (5.18)

See also Eq. (3.13) for the relationship to real range measurements.
Pinhole ray casting has a severe drawback in the multi-sensor scenario inves-

tigated in this chapter. Though the fusion of multiple RI data allows to address
issues that are due to occlusion or partial visibility there is inherently no possibil-
ity to reconstruct a high coverage model of the body surface. This issue is depicted
in Fig. 5.2a and requires more sophisticated surface reconstruction methods such
as the Manifold Ray Casting technique that is described in the next section.

5.4.2 Manifold Ray Casting

The basic idea of Manifold Ray Casting is to have the viewing rays to emanate from a
2-manifold that surrounds the patient instead of one single optical center. A sketch
of this idea is given in Fig. 5.2b. As a distinguishing feature compared to a con-
ventional technique based on a pinhole camera model is the ability to reconstruct
a 180◦ body surface model with a 2-D parameterization imposed by the manifold
sampling domain Ω� ∈ R2. Of course this requires both a suitable choice for the
manifold and a parametric representation of the manifold to specify the topology
of Ω�.

In this work the focus is on a manifold based on a half cylinder enclosing the
distance transform D and thus the patient body. The reasons for this choice is
threefold. First, a half cylinder is a suitable approximation of the human body and
thus provides prior knowledge of the body shape. Second, the 2-D parameteriza-
tion to define the topology of Ω� can be deduced from cylinder coordinates in a
straight-forward manner. Third, the projection of a point x ∈ R3 onto the cylinder
manifold � is given by a closed-form solution which is a very important aspect
towards run-time performance and projective data association schemes as used in
Chapter 7 for efficient nearest neighbor computation.
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Assuming a discretization of Ω� with N1 × N2 sample points i = (i1, i2) ∈ Ω�
the 2-D parametric cylinder coordinates (ρi1 , φi2) are given as:

ρi1 = i1 ·
h

N1 − 1
− h

2
,

φi2 = i2 ·
Φ

N2 − 1
− Φ

2
.

(5.19)

Here, h ∈ R+ is the physical length of the cylinder and Φ ∈ [0, 2π] denotes the
radial coverage. Now, given the radius r of the cylinder, the ray origins o�,i are
given by the corresponding 3-D cylinder coordinates as:

o�,i =
(
r cos

(
φi2
)

, r sin
(
φi2
)

, ρi1
)> . (5.20)

The viewing rays v�,i with ‖v�,i‖2 = 1 are defined by the cylinder normals as:

v�,i =
(
cos

(
φi2
)

, sin
(
φi2
)

, 0
)> . (5.21)

Surface reconstruction using ray casting is then similar to the pinhole model from
Eq. (5.18) with the difference that there are now multiple optical centers.

For reconstructed range measurements R� (i) that are smaller than the cylin-
der radius r the original cylinder manifold and the reconstructed surface S� are
homotopic, i. e. they can be continuously deformed into each other without break-
ing the topology imposed by Ω�. For surfaces S� that do not exhibit strong
discontinuities this also implies that mutual distances of points in a local neigh-
borhoods of S� can be modeled by mutual distances of the corresponding index
neighborhood in Ω�. Note that a similar idea governs the Isomap manifold learn-
ing algorithm [Tene 00] where one aims to find a distance-preserving mapping for
non-linear dimensionality reduction. For RI this has the consequence that the 2-D
domain Ω� can be used for efficient image or mesh enhancement techniques on
R� or S�, respectively. Naturally, this enables to use the pre-processing tech-
niques investigated in Chapter 4 as post-processing methods on R� after ray-
casting prior to reconstructing S�. Further, as investigated later in Chapter 7, a
nearest neighbor problem in S� can be approximated very efficiently via Ω� us-
ing projective data association techniques.

5.5 Experiments and Results

The experiments for the proposed framework for multi-view RI data fusion and
high-coverage surface reconstruction are divided into three different categories.
First, a study on synthetic RI data using a respiration phantom is performed for
quantitatively assessing the suitability of the proposed approach in a dynamic sce-
nario. Next, qualitative results using real RI data of human subjects are presented.
The section concludes with a comprehensive performance study.
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5.5.1 Quantitative Results Using a Respiration Phantom

Quantitative results for the suitability of the proposed fusion and reconstruction
framework in a dynamic respiratory motion scenario are based on simulated RI
data and a synthetic respiration phantom. The purpose of this virtual test envi-
ronment is to assess the intrinsic parameters of the fusion framework in the ab-
sence of extrinsic error sources such as physical limitations in the diverse range
measurement principles, device specific acquisition frame-rates and multi-camera
synchronization issues as well as sensor calibration or manufacturing inaccuracies.

Experimental Setup

Evaluation is performed by using the respiratory motion sequence generated from
the NCAT phantom as outlined in Section 4.7.1. However, instead of one single
virtual camera, a triple RI sensor setup that enables a 180° body coverage was
used. For this purpose, two additional virtual cameras were placed lateral to the
torso at opposing viewpoints to capture the motion model with an overlap at the
anterior thorax region.

Sensor characteristics For evaluation, the motion model sequence was sampled
both at full fs = 30 Hz and half fs = 15 Hz sampling rate. These two sampling
rates are introduced to assess the effects of long computation or processing times
that hinder a real-time system to cope with the frame rate of the RI sensor which
ultimately results in the loss of some patient surface data. For some experiments,
to assess the fusion framework in a more realistic manner, the synthetic range data
R1,2,3 from the three cameras was corrupted with the same noise characteristics as
in Section 4.7.1, i. e. missing data based on sensor specific defect probability maps,
static Perlin noise and temporal variations that are sampled from a normal distri-
bution (σN =

√
2) and as a last step quantization artifacts (∆Q = 4). Optionally,

for corrupted data, post-processing using techniques outlined in Chapter 4 was
performed on the reconstructed RI dataR� prior to computing S�.

Fusion and reconstruction configuration The physical extent of the embedding
domain Γ was chosen to cover the respiration phantom and corresponds to a rect-
angular cuboid with an edge length of approximately 664 mm× 257 mm× 422 mm
in SI, anterior-posterior (AP) and medio-lateral (ML) direction, respectively. Un-
less stated otherwise, the reported results were obtained by using a discretization
of the distance transform according to Γ ∈ R512×512×512. The support region for
approximated distances was empirically chosen as ε = 20 mm, the temporal in-
tegration parameter α is varied between experiments to assess its influence. For
surface reconstruction using manifold ray casting a half cylinder along the SI di-
rection was chosen with suitable radius r = 255 mm close to the AP extent and a
height equal to the SI size, i. e. h = 664 mm. For all experiments the virtual RI do-
main for ray-casting was kept fixed with an arbitrarily chosen resolution according
to Ω� ∈ R640×480.
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(a) b = −1.0. (b) b = 0.0. (c) b = 1.0.

Figure 5.3: Color-coded point-wise distances from the respiration phantom to the
reconstructed surface. The left and right figures approximately correspond to a
steady exhale and inhale phase, respectively, whereas the center figure depicts an
intermediate state between exhale and inhale. The reconstructions were obtained
from successive temporal data integration with α = 0.4.

Error assessment The actual performance of the fusion framework is assessed by
the reconstruction error that is expressed as the point-to-surface distance from the
ground truth respiration phantom to the corresponding reconstructed surface. A
point-to-surface distance was favored over a point-to-point metric to cope with
systematic errors that would occur due to the different topology of the recon-
structed surface defined on a dense regular grid and the motion model that is
governed by a sparse unstructured grid. In contrast to the preceding section, the
evaluation is not restricted to a specific sub region but is performed across the en-
tire motion model surface. This restriction could be relaxed as a direct consequence
of the high coverage reconstruction ability of the proposed framework. For com-
pactification, the first (Q1), second (Q2) and third (Q3) quartiles of the errors across
the entire surface are reported.

To assess the difference between different approaches or parameterizations a
left-tailed Wilcoxon signed-rank test was performed. The null hypothesis is that the
median difference in Qi errors between two experiments across all frames equals
a threshold δ whereas the alternate hypothesis is that the median difference is
smaller than that threshold. For details see the description in Section 4.7.1.

Results

Experimental results are reported for the general accuracy of the proposed fusion
and reconstruction framework, the ability to account for noise and artifacts and,
last, for the discretization of the SDF embedding domain Γ.

General error and temporal integration Exemplary distributions of point-to-
surface distances for different motion model states are depicted in Fig. 5.3 and
a temporal integration parameter α = 0.4. Conspicuous is the discrepancy of re-
construction errors between the steady respiration states in Figs. 5.3a and 5.3c and
the intermediate state visualized in Fig. 5.3b. Whereas the former errors do not
exceed 0.5 mm the reconstructed intermediate respiration state features a distinct
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error clustering in surface regions that correspond to respiration motion in AP di-
rection and exhibit an error scale of ∼ 2.5 mm.

This effect is detailed in Fig. 5.4 for varying temporal integration parameters
α along with different sampling rates fs across the entire respiration sequence.
Similar to the errors corresponding to the intermediate state in Fig. 5.3b there are
distinct spikes in the error graphs that coincide with a changing respiration state
or magnitude. In fact, for a high temporal averaging and low sampling rate as
outlined in Fig. 5.4a a statistical significant PCC of 0.85 (p ≤ 0.01) was found be-
tween the frame-wise median reconstruction errors and the absolute values of the
derivative of the model parameters w. r. t. the frame index. This correlation coeffi-
cient drops down to 0.15 (p ≤ 0.01) for α = 0.9 and a sampling rate of fs =30 Hz.
The reason for this effect is that for high temporal averaging, i. e. small values for
α, the reconstructed surface is by the definition of data fusion from Eq. (5.14) com-
posed of several instantaneous body surfaces that were captured at different time
points. Fusing body surfaces acquired at different respiration states thus inevitable
results in an erroneous surface reconstruction. This effect is heavily influenced by
the surface sampling frequency as outlined in the left column of Fig. 5.4 for the half
sampling rate of fs = 15 Hz. These errors are similar to pre-processing results as
investigated in Chapter 4 in the context of temporal denoising. For noise-free data,
performing no temporal integration at all (α = 0) yields the lowest reconstruction
error with a median error in the scale of 0.1 mm. However, there is no significant
difference (δ = 0.1, p ≤ 0.01) between α = 1.0 and α = 0.9 for the Q1,Q2 and Q3
surface reconstruction errors and the full sampling rate fs = 30 Hz.

In this regard, the reconstruction error corresponding to exclusive instanta-
neous data constitutes the lower error bound for the fusion and reconstruction
framework proposed in this thesis. This lower error bound is a superposition of
various effects including voxel spacing, approximated distances and surface re-
construction using ray-casting. The effect of voxel spacing in the embedding do-
main Γ will be detailed later as it is directly linked to the run-time performance of
the fusion framework. However, the other effects are not investigated further as
the overall reconstruction error is considerably smaller than the noise level of the
synthetic and real-life RI data as investigated in this thesis.

Noise and artifacts Surface reconstruction errors for RI data that was corrupted
by noise are illustrated in the left column of Fig. 5.5 across the entire motion se-
quence. Again, distinctive spikes corresponding to changing respiration states are
noticeable. Though minor noise reductions are observable for steady respiration
states and a high temporal integration parameter of α = 0.4 as depicted in the first
10 frames in Fig. 5.5a the error scale during phases of changing respiration state is
very high and not acceptable in practice. Further, when performing a subsequent
post-processing step as shown in the right column of Fig. 5.5, the effect of temporal
denoising in steady respiration states is hardly visible and performing no temporal
integration yields the best result with a median error of ∼ 0.2 mm. Interestingly,
though the exact same parameterization for noise and artifacts as in the quantita-
tive pre-processing evaluation in Section 4.7.1 was used, the fusion reconstruction
error for the raw data in the scale of 0.4 mm is considerably smaller compared to a
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(a) α = 0.4, fs =15 Hz. (b) α = 0.4, fs =30 Hz.

(c) α = 0.6, fs =15 Hz. (d) α = 0.6, fs =30 Hz.

(e) α = 0.8, fs =15 Hz. (f) α = 0.8, fs =30 Hz.

(g) α = 1.0, fs =15 Hz. (h) α = 1.0, fs =30 Hz.

Figure 5.4: Reconstruction error expressed as the point-to-surface distance be-
tween the ground-truth respiration phantom and the reconstructed body shape
for varying temporal integration parameters α and sampling rates fs.
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(a) α = 0.4. (b) α = 0.4 with post-processing.

(c) α = 0.6. (d) α = 0.6 with post-processing.

(e) α = 0.8. (f) α = 0.8 with post-processing.

(g) α = 1.0. (h) α = 1.0 with post-processing.

Figure 5.5: Surface distance between the ground-truth respiration phantom and
the reconstructed body shape for varying temporal integration parameter α in the
presence of noise and artifacts. Optionally, as shown on the right column, post-
processing was performed on the reconstructed range data R� using normalized
convolution and bilateral filtering, cf. Chapter 4.
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Size of Γ Ideal data Corrupted data
Q1 Q2 Q3 Q1 Q2 Q3

1283 0.06 0.12 0.19 0.10 0.21 0.35
2563 0.06 0.13 0.19 0.09 0.19 0.32
5123 0.06 0.13 0.19 0.09 0.19 0.31

Table 5.1: Reconstruction errors for varying discretizations of the SDF embedding
domain Γ. For corrupted data post-processing is performed. Reported are the
mean Qi errors in [mm] across the entire motion model sequence. The standard
deviation did not exceed 0.01 and thus is omitted. Note that the resolution of Γ
has no substantial impact on the reconstruction accuracy.

median error of ∼ 1.5 mm that was observed for corrupted data in Chapter 4. See
Fig. 5.5g and Fig. 4.10b for a direct comparison. The reason for this discrepancy is
partially due to the overlapping field of views in the triple sensor setup that allows
for a super-resolved surface reconstruction especially when considering quantiza-
tion artifacts. Similar effects were reported for scene reconstruction in the Kinect
fusion framework [Newc 11], however, using a single but moving camera.

Discretization of Γ The last part of this evaluation is concerned with the impact
of the discretization of the SDF embedding domain Γ to the reconstruction accu-
racy. The errors across the entire motion sequence are reported in Table 5.1. The
results show that the error induced by the proposed fusion framework is mostly
independent from the chosen discretization of the SDF embedding domain Γ. For
example there is no significant difference (p ≤ 0.01) for the ideal Q1, Q2 and Q3
reconstruction errors between a discretization with 1283 and 5123 voxels. This ef-
fect becomes clear by recalling that for reconstructing the fused representationR�
a ray casting technique is applied, cf. Section 5.4. The ray casting method is im-
plemented to perform a trilinear interpolation of the SDF and thus the sensitivity
w. r. t. the spacing of the SDF is decreased.

5.5.2 Qualitative Results on Real RI Data

The qualitative assessment of the proposed fusion and reconstruction framework
on real data is performed for four healthy male subjects S1 − S4.

Experimental Setup

The subjects’ body surface was acquired using two Kinect RI sensors that were
positioned and oriented to provide a high coverage with a slightly overlapping
field-of-view in the thorax region. The Kinects were calibrated using an exter-
nal tool based on the corner-detection framework in the OpenCV software library
[Brad 08]. Time-synchronized multi-view RI data consisting of 10 successive frames
for each sensor were then fused with a temporal integration weight of α = 0.6 that
was chosen heuristically for the Kinect RI devices to provide a trade-off between
denoising and dynamic scene preservation. The distance transform D and the
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Figure 5.6: Qualitative results for RI data fusion and surface reconstruction for
subject S1. The subject was captured using two Kinect RI sensors. The proposed
fusion and reconstruction framework enables a high coverage body surface model,
however, the mesh reflects the noise characteristics of the RI device and exhibits
artifacts due to sensor interference.

weighting function W were discretized on a regular grid covering Γ with 2563

voxels using a subject specific spacing that was adjusted on-the-fly. The body sur-
face was then reconstructed using manifold ray casting with a cylindrically shaped
sensor domain that was discretized with 640× 480 pixels.

Results

Qualitative surface reconstruction results using this configuration are depicted in
Fig. 5.6. This figure demonstrates that high coverage body surface models are en-
abled by the proposed multi-view RI fusion and reconstruction framework. How-
ever, though 10 successive frames were used for temporal data denoising, the re-
constructed mesh still shows some rough parts that resemble the discretization
artifacts known from the Kinect sensor, cf. Chapter 4. Note that a super-resolved
scene as computed by Newcombe et al. [Newc 11] is unfeasible as the RI sensors
are mounted statically and observe a body surface that is either not moving or de-
forming non-rigidly. Though, in theory, a non-rigid surface registration could help
to set up point-correspondences for a super resolution approach this is not feasi-
ble in practice due to run-times that do not satisfy real-time constraints. Besides
the rough surface, the reconstructed mesh exhibits discontinuities in the umbilicus
region that are due to sensor interference.

Therefore, prior to computing the actual 3-D mesh, the range data R� as com-
puted from ray-casting the distance transform is enhanced using normalized con-
volution to account for missing values and, as a finalizing processing step, guided
filtering for the purpose of edge-preserving denoising, cf. Sections 4.4.1 and 4.5.2.
The reconstruction results using this post-processing steps are depicted in Fig. 5.7.
For all subjects post-processing yields a smooth surface representation with clearly
visible retained salient landmarks such as the umbilicus and the ribcage.

5.5.3 Performance Study

The performance study is conducted on both the synthetic respiration phantom
using a triple-sensor setup as well as the real life subjects with a dual-sensor setup.
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Figure 5.7: Qualitative results for RI data fusion and surface reconstruction for four
male subjects. The body surfaces were captured using two Kinect RI sensors. Note
the wide field of view coverage for all subjects and salient anatomical landmarks.
For visualization purposes the surface meshes are cropped to a region of interest
covering the upper body excluding arms and the neck.
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Size of Γ Step P (K = 3) S1 (K = 2) S2 (K = 2) S3 (K = 2) S4 (K = 2)

1283

TP 3.16± 0.05 1.41± 0.18 1.42± 0.19 1.41± 0.18 1.42± 0.17
TF 1.86± 0.03 0.18± 0.01 0.19± 0.01 0.18± 0.01 0.21± 0.02
TR 0.72± 0.04 0.66± 0.06 0.64± 0.06 0.70± 0.07 0.66± 0.05
TPP 1.89± 0.04 2.13± 0.16 2.14± 0.14 2.14± 0.15 2.15± 0.15
T 7.63± 0.16 4.38± 0.41 4.39± 0.40 4.43± 0.41 4.44± 0.39

2563

TP 3.21± 0.17 1.43± 0.18 1.47± 0.24 1.41± 0.19 1.45± 0.20
TF 2.33± 0.02 1.03± 0.02 1.02± 0.02 1.13± 0.03 1.07± 0.02
TR 0.87± 0.05 0.78± 0.07 0.75± 0.06 0.83± 0.06 0.79± 0.07
TPP 1.88± 0.06 2.15± 0.16 2.16± 0.15 2.18± 0.20 2.17± 0.16
T 8.29± 0.30 5.09± 0.43 5.40± 0.47 5.55± 0.48 5.48± 0.45

5123

TP 3.18± 0.15 1.45± 0.19 1.40± 0.18 1.41± 0.19 1.44± 0.21
TF 11.3± 0.19 7.34± 0.15 7.21± 0.08 8.07± 0.06 7.59± 0.10
TR 2.40± 0.16 1.95± 0.08 1.80± 0.08 2.32± 0.07 2.00± 0.09
TPP 1.89± 0.05 2.20± 0.17 2.15± 0.16 2.14± 0.16 2.17± 0.20
T 18.8± 0.55 12.9± 0.59 12.6± 0.50 13.9± 0.48 13.2± 0.60

Table 5.2: Average run-times in [ms] for the multi-view RI framework. Reported
are data preparation TP (host-device RI data transfer, confidence computation),
multi-view SDF fusion TF, surface reconstruction using manifold ray-casting TR,
post-processing TPP and the total time T . For the respiration phantom P a triple-
sensor setup (K = 3) and for subjects S1-S4 a dual-sensor setup (K = 2) was used.

Experimental Setup

For better interpretation, the total run-time was subdivided into four distinct com-
ponents consisting of (1) data preparation time TP which includes the host-device
RI data transfer and the computation of the confidence maps, (2) SDF integration
or fusion time TF, (3) reconstruction time using manifold ray casting TR and (4)
post-processing time TPP. Due to its importance regarding the trade-off between
spatial resolution on the one hand and memory requirements or computational
complexity on the other hand, run-times were investigated for different resolu-
tions of the embedding domain Γ. For details on the hardware configuration and
time measurements the reader is referred to Appendix B.

Results

The fusion and reconstruction run-times for the respiration phantom and subjects
S1-S4 are given in Table 5.2. For large resolutions, the overall run-times are domi-
nated by the SDF integration or fusion and run-times are directly proportional to
the SDF resolution, i. e. TF ∝ |Γ|. However, increasing the resolution also results
in higher reconstruction times TR which is among others due to the fact that ray
casting a larger volume also increases the number of texture cache misses.

In general, run-times vary only slightly across the different respiration states.
This is not self-evident as the number of arithmetic operations and memory trans-
actions to compute D andW are scene dependent. For example, for small weights
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in the current estimate forW close to zero there is no need to update the new es-
timate and points that are outside the viewing frustum of the cameras, i. e. they
are not projected into the sensor planes Ω, are discarded completely. As expected,
the run-times for data preparation TP and post-processing TPP do not depend on
the volume configuration and constitute an overhead that must not be neglected,
especially for small resolutions.

5.6 Discussion and Conclusion

This chapter proposed and investigated a real-time capable framework that en-
ables unifying high coverage body surface models computed from multi-view
RI. The results show that a synthetic respiration phantom can be reconstructed
with a typical reconstruction error in the scale of 0.2 mm for corrupted data. For
real-life RI data, distinct anatomical landmarks are perceptible throughout the re-
constructed surface. Regarding real-time constraints, a GPU implementation has
proven to be very efficient. As the reconstruction accuracy is not influenced sub-
stantially by the chosen discretization of the implicit surface representation, an
entire pipeline consisting of dual sensor multi-view data fusion, explicit surface re-
construction and subsequent post-processing can be realized in 4.4 ms. This copes
with the frame-rate of current RI sensors and enables low latencies while simulta-
neously saving resources for subsequent data processing and analysis steps.

The key issue with the proposed method is the temporal integration of RI data
in a respiratory motion scenario. Though temporal denoising is an often used
technique, the quantitative evaluation show that there exists a strong correlation
between the surface reconstruction error and changing respiration states for ag-
gressive up to moderate temporal averaging strategies. This is similar to the re-
sults for temporal denoising that were investigated in Chapter 4 of this thesis. At
a first glance this favors to perform no temporal integration at all. However, the
spatial distribution of errors induced by temporal averaging shows a predominant
cluster that corresponds to regions of high respiration magnitude at the anterior
thorax whereas corruptions by noise are evenly spread across the whole surface.
In certain applications, particularly for patient positioning, it might be beneficial to
give priority to stationary body surface regions that do not move with respiratory
motion. Clearly, these regions can benefit from a temporal averaging strategy.

With regard to future generations of RI devices and the steady trend towards
higher frame-rates in range imaging the partially negative effect of temporal inte-
gration can potentially be lessened. This is underlined by the experiments using
different sampling rates of 15 Hz and 30 Hz. However, also given frame rates of
80 Hz as available with ToF devices, the temporal integration parameter must al-
ways be chosen carefully and temporal integration must be considered as a trade-
off between a stable and steady surface and an accurate reconstruction.

In particular with regard to temporal integration issues, the experiments con-
ducted in this chapter underline the fact that RI data processing in a highly dy-
namic scenario such as respiratory motion analysis is fundamentally different from
conventional static scenarios.
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This chapter covers the fundamental concepts of 4-D shape priors for respira-
tion analysis. In particular, this includes the basic techniques needed for training
4-D motion models as pursued in preceding work [Wasz 12a, Wasz 12b, Wasz 13,
Wasz 16]. Further, a joint theoretical investigation of respiration induced defor-
mations for unambiguous respiratory motion analysis that was first proposed in
preceding work [Wasz 13] is detailed. As a major part of this chapter, sparse
representation schemes for 4-D respiratory motion models enabling an unsuper-
vised classification of thoracic and abdominal breathing patterns as published in
[Wasz 12a, Wasz 16] are investigated.

6.1 Motivation

Pre-procedurally trained motion models that encode prior knowledge of patient
specific distinct breathing patterns and respiration induced body surface deforma-
tions hold many benefits for intra-procedural respiratory motion analysis. Such
models that are referred to as 4-D shape priors or motion models in this thesis
can be used to train specific breathing patterns for breath-hold motion mitigation
strategies, detect deviations of the instantaneous breathing pattern from the plan-
ning phase or to enable an automatic differentiation between thoracic and abdom-
inal breathing. Further, prior knowledge on the 4-D appearance of the patient’s
body surface can be used for motion compensated patient positioning techniques
and surrogate driven continuous respiration monitoring. These clinical applica-
tions are subsequently detailed in Chapter 7. As another application field, motion

75
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models can be used as a dynamic ground truth for algorithmic verification as used
in Chapters 4 and 5 of this thesis.

6.2 Related Work

From a methodological point of view, the body surface motion model as used in
this thesis can be interpreted as a statistical shape model (SSM) with pioneering
work by Cootes et al. [Coot 95] for active shape models. SSMs are widely used in
medical image segmentation and for a comprehensive overview on this applica-
tion field the reader is referred to the review by Heimann and Meinzer [Heim 09].
It is worth noticing that, in contrast to most SSMs used for segmentation, the mo-
tion models proposed in this thesis are patient-specific. Besides segmentation in
medical imaging, statistical shape models have also been proposed for different
applications such as growth modeling of human mandibles [Hilg 03], synthesis
of 3-D faces [Blan 99] or for predicting aging trajectories of faces [Sche 07a]. Of
particular importance for SSMs and for this chapter are the problems of estab-
lishing point correspondences across different shapes using non-rigid registration
techniques and subsequent modeling of shape variations using dimensionality
reduction techniques. However, note that different approaches for computing
correspondences apart from non-rigid registration schemes have also been pro-
posed. An example is the minimum description length criterion that reformu-
lates the correspondence problem as a spherical mapping optimization problem
[Davi 02, Thod 03].

As statistical respiratory motion models of the external body surface are not yet
described in literature, the related work covers a more broad range of application
fields, however, sharing the same basic principles and methodology. For a review
of general motion models for respiration analysis the reader is referred to the work
of McClelland et al. [McCl 13].

Non-rigid surface registration Setting up point correspondences across differ-
ent shapes is a fundamental part for building SSMs and non-rigid deformation
techniques are popular means for this task. For example, Liu et al. use an in-
tensity based non-rigid deformation technique to construct a shape model of the
lung [Liu 10]. The point correspondences are extracted from the elastic dense de-
formation fields that map intensity images from different respiration states to a
properly chosen reference in the respiration cycle. For registration, a purposely
developed technique for lung motion estimation was used [Fosk 05]. In this re-
gard, a more recent dedicated registration scheme for lung motion estimation was
proposed by Papiez et al. [Papi 13]. This approach extends conventional registra-
tion schemes with diffusion regularization such as the well known Demons al-
gorithm [Thir 98] with an adaptive regularized bilateral filter of the deformation
field. Similar to conventional bilateral filtering or edge-preserving denoising in
general (cf. Section 4.5), this prevents the deformation field to be smoothed across
object boundaries. A dense intensity based registration scheme has also been pro-
posed by Ehrhardt et al. for constructing a 4-D lung motion model [Ehrh 11]. Be-
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sides intensity based registration schemes for lung motion estimation, different
representations have also been proposed. For example Klinder et al. [Klin 10] con-
struct a statistical motion model of the lung using point correspondences that are
directly but sparsely established on organ surfaces that have been extracted from
segmented and binarized image data. Besides lung motion analysis, binary images
have also been used for dense volumetric registration of organs in the SSM-based
kidney segmentation framework proposed by Spiegel et al. [Spie 09]. Here, a ded-
icated curvature similarity metric is incorporated to account for shape properties.
However, instead of using shapes or binary data directly, Huang et al. [Huan 06]
proposed to perform non-rigid registration on the distance transform or implicit
shape representations.

So far these methods had a strong focus on registration of internal shapes and
only recently dedicated methods for registering body surface data have been pro-
posed. Among the first was the work by Schaerer et al. that use a non-rigid Iter-
ative Closest Point (ICP) variant to generate high dimensional respiration surro-
gates [Scha 12]. This non-rigid ICP was originally proposed by Amberg et al. as a
general purpose point-set registration technique [Ambe 07]. In this context, alter-
native generic point-set registration schemes include the work of Myronenko and
Song [Myro 10] or Jian and Vemuri [Jian 11] where the registration problem is inter-
preted as a density estimation problem for a Gaussian mixture model. In contrast
to these general purpose mesh or point-set registration schemes, Bauer et al. pro-
posed dedicated variational surface deformation estimation techniques that are
explicitly designed to exploit the governing representation of intra-procedural RI
and pre-procedural planning data [Baue 12b, Baue 12a]. This includes both the
expected RI noise level and data reliability as well as RI sampling density.

Dimensionality reduction Modeling shape variations using dimensionality re-
duction techniques is an ubiquitous part for SSMs. The fundamental principle
here is that a set of corresponding shapes, each typically consisting of thousands
of individual surface points, is actually governed by only a few intrinsic parame-
ters that have to be recovered from this training set. Any unseen test shape is then
approximated by estimating the parameters such that the corresponding high di-
mensional model resembles the test shape. Typically, this step also includes plau-
sibility enforcement by placing boundaries for parameter values.

One key characteristic of dimensionality reduction techniques is if varying one
low-dimensional parameter impacts the entire shape on a global scale or if the
effect is limited to a locally clustered set of points. Conventional techniques like
Principal Component Analysis (PCA) are global methods [Coot 95] and different
approaches for enforcing locality or sparsity have been proposed. For example,
Stegman et al. used orthomax rotations to construct sparse modes of variations
based on a conventional preceding PCA [Steg 06]. In contrast, Sjösrand et al. use
the sparse PCA proposed by Zou et al. [Zou 06] to directly generate a sparse repre-
sentation for modeling shape variability [Sjos 07]. Other popular sparse methods
used for shape modeling include independent component analysis [Uzum 03] or max-
imum autocorrelation factors [Hilg 03].
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A different aspect of dimensionality reduction techniques is concerned with
linear and non-linear decomposition schemes of the training data. The original
linear methods were soon relaxed by using regression techniques [Sozo 94], mix-
ture models [Coot 99] or kernel PCA (KPCA) [Twin 01]. However, in contrast to
linear decomposition schemes like PCA and derived sparse variants, non-linear
methods such as KPCA or manifold-learning techniques including Locally Lin-
ear Embedding (LLE) [Rowe 00] and Laplacian Eigenmaps (LEM) [Belk 03] do not
provide direct solutions for the so-called out-of-sample and the pre-image problems.
The out-of-sample problem refers to assigning a label or a low-dimensional value to
data that was not seen in the training stage. This can also be interpreted in terms
of inductive opposed to transductive reasoning [Zhu 08, Chap 06]. Typical solutions
to this problem are the re-computation of the model or incremental learning tech-
niques [Law 06, Fisc 14]. In contrast, the pre-image problem is concerned with the
mapping from the low dimensional space to the original high dimensional space
[Hone 11]. These problems usually require a re-computation of the model or it-
erative optimization techniques as proposed for non-linear SSMs by Twining and
Taylor [Twin 01] or Kirschner et al. [Kirs 11]. For specific kernels dedicated non-
iterative methods have been proposed [Kwok 04], however, these approaches are
ill-conditioned thus requiring appropriate penalizing strategies [Zhen 10]. In gen-
eral, non-linear methods for shape modeling are not widespread, and for example
in medical image segmentation the majority of approaches rely on linear methods
[Heim 09].

6.3 Principles of 4-D Shape Priors

The basic principle of 4-D shape priors as pursued in this thesis is to pre-procedurally
acquire the patient’s body surface at different respiration states and then perform
dimensionality reduction techniques on the aligned training data to generate a 4-D
motion model that encodes prior knowledge of patient specific breathing patterns.
Here, the term ’aligned’ refers to registered shapes with established point or land-
mark correspondences. Intra-procedurally, this motion model is then registered to
RI surface data which eventually provides the basis for motion compensated pa-
tient alignment as well as continuous respiration monitoring. These clinical appli-
cations and their unification in a mathematical framework are subsequently de-
tailed in Chapter 7.

6.3.1 Shape Motion Models Using Displacement Fields

One crucial challenge for respiratory motion models is the pre-procedural repre-
sentation of the patient body surface at different respiration states. In contrast to
the previous sections where a continuous RI body surface was represented as a
set of points organized on a regular grid, a well-defined topology and uniform
sampling of surface points is not guaranteed. This is due to the fact that pre-
procedural body surfaces do not necessarily have to be acquired by RI cameras but
instead could be extracted from 4-D volumetric planning data as obtained from CT
or MRI. Further, laser scanners or markers attached to the body do not provide a
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continuous surface representation at all. Thus, in the context of motion models as
pursued in this thesis, the patient’s body is represented as a point-cloud or point-set
rather than a continuous surface.

Following the point set paradigm, let P s = {xs
1, . . . , xs

N}, xs
i ∈ R3 denote the

set of N points that describe the body surface at respiration state s. For the mo-
tion model generation it is of utmost importance that the point sets are aligned
properly such that individual 3-D points from different respiration states describe
corresponding landmarks and that differences are solely due to respiratory motion
and not due to artifacts caused by data representation or sampling. This property
can be enforced by modeling the surface points P s for respiration state s through
a set of points P0 = {x0

1, . . . x0
N}, x0

i ∈ R3 from a reference respiration state 0,
e. g. fully exhaled, that are warped with an elastic deformation. This deformation
is represented as a displacement field U s = {us

1, . . . , us
N}, us

i ∈ R3 encoding the
point-wise displacements induced by respiratory motion as:

xs
i = x0

i + us
i , ∀xs

i ∈ P s. (6.1)

The displacement field U s that eventually accounts for valid point correspondences
between different respiration states can be computed using various non-rigid sur-
face registration techniques that are outlined in Section 6.4. Note that this for-
mulation does not cover non-respiratory motion as a proper patient alignment is
assumed. See Chapter 7 for details on such methods.

For a subsequent analysis of different respiration states a formulation in a high-
dimensional vector space H ⊂ R3N is often preferable compared to point sets or
displacement vectors. Let L be defined as an operator that concatenates a set of
3-D vectors or points Z = {zi} , zi ∈ R3 to a single vector z ∈ H as:

z = L (Z) =
(

z>1 , . . . , z>N
)>

. (6.2)

Conversely, L−1 is defined as the ’inverse’ transformation operator that restores
the initial representation, i. e. L−1 (L (Z)) = Z . Without loss of generality, the
point-wise surface displacement formulation from Eq. (6.1) can thus be equiva-
lently expressed inH using a linear model according to:

L(P s) = L(P0) + L(U s). (6.3)

Generating the motion model now consists of recovering the intrinsic structure
that governs the high-dimensional representations of the training data L(P s) with
s = 1, . . . , S. This is done by using dimensionality reduction techniques that, for
the intra-procedural model application, must also be capable to perform well on
unseen point-sets that are not contained in the training data. These issues are
investigated in Section 6.5.

6.3.2 Condition of Body Surface Displacement Fields

Independent from non-rigid registration and dimensionality reduction techniques
the formulation of shape correspondences using point-wise displacements from
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(a) Rigid shifts. (b) Non-rigid deformations.

(c) Rigid shifts. (d) Non-rigid deformations.

Figure 6.1: Surface displacement fields encoding patient movement (left) and res-
piratory motion (right) as observed for sagittal (top) and transverse (bottom) views
of the torso. Patient movement is characterized by piece-wise global rigid shifts
whereas respiratory motion is governed by an elastic deformation. On a local scale
displacements corresponding to non-rigid deformations appear as rigid shifts,
cf. grayscales of the respiration magnitude. On a global scale, displacements in
the sagittal plane exhibit a translational component which is typically not the case
for transverse plane.

Eq. (6.1) or the equivalent formulation in H from Eq. (6.3) allow to deduce a theo-
retical concept for assessing the condition or fitness of body surface displacement
fields for respiratory motion analysis purposes. The general problem that has to
be faced is to automatically and quantitatively assess if a given body surface dis-
placement field appropriately reflects non-rigid deformations induced by respira-
tory motion or if the displacements for example encode rigid shifts that are caused
by patient or treatment table movement. This issue is of particular importance if a
differentiation between these motion patterns is essential as for example with res-
piratory motion compensated patient positioning strategies that are investigated
in Chapter 7.

A sketch of the general problem is given in Fig. 6.1. Self-evident is the non-
rigid nature of respiration induced body surface deformations. However, this only
holds true on a global scale, that is by observing the entire body surface. On a local
scale, i. e. when considering only a small region on the body surface, the displace-
ments may appear as rigid shifts that could be erroneously classified as a patient
alignment problem and not a respiratory motion mitigation issue. Thus, displace-
ment fields for respiratory motion analysis ideally should not contain any simi-
larity transforms, i. e. translations, rotations and scalings, to account for potential
ambiguity errors. This need for robust displacement fields also arises from the fact
that in statistical shape modeling it is common to perform a so-called Procrustes
Alignment (PA) of the training data [Heim 09]. This removes similarity transforms
from the training samples such that only pure shape deformations remain. Conse-
quently, an ideal displacement field for shape modeling does not exhibit any simi-
larity transforms. However, for RI-based respiratory motion analysis, performing
PA is counterproductive. As mentioned above, the displacement field depicted
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in Fig. 6.1b exhibits a linear component that would be removed by PA. However,
if the two surfaces are to be aligned again this would now involve a false addi-
tional translation or erroneous alignment step that exactly corresponds to the one
removed in the preceding PA step.

For quantitative assessment of body surface displacement fields there are seve-
ral options. In preceding work [Wasz 13], the assessment problem was formulated
in the high-dimensional spaceH using the formulation from Eq. (6.3). Inspired by
pattern recognition principles where one aims to maximize the distance between
different classes [Duda 00] the idea is that the high-dimensional representation of
the displacement field us = L(U s) constitutes a direction vector in H and one
wants to maximize the angle to directions e{x,y,z} ∈ H that correspond to rigid
shifts in x-, y- and z-direction, respectively. Translations inH are defined as linear
combinations of the canonical forms:

ex = (1, 0, 0, 1, 0, 0, . . . , 1, 0, 0, 1, 0, 0)>,

ey = (0, 1, 0, 0, 1, 0, . . . , 0, 1, 0, 0, 1, 0)>,

ez = (0, 0, 1, 0, 0, 1, . . . , 0, 0, 1, 0, 0, 1)>.

(6.4)

Thus, a metricKSP to assess and quantify the condition of a body surface displace-
ment field us can be deduced according to the scalar product (SP) as:

KSP (us) = 1−

1
3 ∑

i={x,y,z}

|〈us, ei〉|
‖us‖2‖ei‖2

 ∈ [0, 1]. (6.5)

If us corresponds to a rigid shift, e. g. in x-direction and thus parallel to ex, then
at least one addend of Eq. (6.5) equates to one. Such rigid shifts are illustrated
in Figs. 6.1a and 6.1c. In contrast, if us corresponds to a ’maximally’ non-rigid
displacement field then all addends will equate to zero. Such a ’maximally’ non-
rigid displacement field may for example be characterized in the form of us =
(1, 0, 0, 1, 0, 0, . . . ,−1, 0, 0,−1, 0, 0) ∈ H being orthogonal to all rigid shifts ex,y,z ∈
H. In RI based respiratory motion analysis this corresponds to distinct body sur-
face regions that move in opposing directions as can be observed in the transverse
plane of the torso as depicted in Fig. 6.1d. In contrast, observing solely the an-
terior regions of the thorax as depicted in Fig. 6.1b is prone to errors as basically
all displacement vectors share the same direction and linear dependency is solely
broken due to slightly different displacement magnitudes.

A direct consequence of these theoretical and anthropological considerations
is that motion models that provide a high body surface coverage are beneficial
and of importance in RI based respiratory motion analysis. This is enabled by the
multi-view fusion framework proposed in preceding work [Wasz 13] and detailed
in Chapter 5 of this thesis.

Though the theoretical basis of the condition metric from Eq. (6.5) allows to
derive direct requirements for RI based respiratory motion analysis it does not re-
flect the whole spectrum of affine transformations. While shearing, reflections and
scaling are of no practical relevance in respiratory motion this does not necessar-
ily hold true for rotations. A different formulation for assessing the condition of
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displacement fields that incorporates rotations is based on the conventional point-
wise displacement formulation from Eq. (6.1). Here, the reconstruction error of
displacement fields w. r. t. an optimal rigid body transformation similar to PA are
analyzed. Let (R̂, t̂) denote the rotation R̂ ∈ SO3 and translation t̂ ∈ R3 that
approximate the displacement field U s in a least squares sense according to:

(R̂, t̂) = argmin
R,t

N

∑
i=1
‖(x0

i + us
i )− (Rx0

i + t)‖2
2. (6.6)

The conditionKRE of U s can thus be derived from the residual error (RE) of Eq. (6.6)
using a formulation similar to root mean squared errors according to:

KRE (U s) =

√√√√∑N
i=1 ‖(x0

i + us
i )− (R̂x0

i + t̂)‖2
2

∑N
i=1 ‖us

i‖2
2

∈ [0, 1]. (6.7)

For a displacement field U s that can be perfectly modeled by rotations and trans-
lations there is no reconstruction error at all and the nominator of Eq. (6.7) con-
sequently equates to zero. In contrast, in the presence of a ’maximally’ non-rigid
displacement field that cannot be described by rotations and translations the least
squares estimator for Eq. (6.7) necessarily must yield the identity transform, i. e. R =
diag(1, 1, 1) and t = (0, 0, 0)>. In this case the nominator equals the denominator
and the condition metric equates to one.

6.4 Shape Correspondences by Deformable Registration

As outlined in the related work in Section 6.2 there exists several non-rigid regis-
tration strategies for computing point correspondences across shapes. This section
summarizes the registration techniques that have been used in preceding work
and are employed in this thesis. The presented approaches can be directly used
for the generic model from Eq. (6.1) where one is interested in estimating the dis-
placement field U s that describes the elastic deformation φs matching a patient
reference surface and the patient shape acquired at respiration state s.

6.4.1 Non-rigid RI Surface Registration

This method was purposely developed for RI surface registration and the under-
lying variational formulation was originally proposed by Bauer et al. [Baue 12b]
for joint ToF data denoising and registration, However, the method was also suc-
cessfully employed in preceding work [Wasz 12b] for motion model generation.

For this specific registration scheme, the fixed and moving point sets P0,P s are
represented by the RI surface data S0,S s that form graphs on the domain Ω, see
Eq. (3.12) for the function or graph definition of RI surfaces. Further, the elastic
deformation φs is represented by a displacement field Ũ s

: Ω→ R3 defined as:

φs(S0(i)) = S0(i) + Ũ s
(i). (6.8)
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Now, the goal is to estimate φs in a sense that φs(S0) ≈ S s. For this purpose, S s

is represented by its signed distance function Ds : R3 → R where the sign is posi-
tive outside the body and negative inside. This is similar to the volumetric fusion
scheme investigated in Chapter 5, however in this chapter the distance transform
is neither approximative nor truncated or clamped. By definition of signed dis-
tance functions, ∇Ds(x) is an outward pointing normal on S s and |∇Ds| = 1.
Based on the distance transform, the projection of a point x ∈ R3 onto the closest
point on S s can be derived according to:

Ps(x) := x−Ds(x) · ∇Ds(x). (6.9)

This allows to quantify the closeness of a displaced fixed point φs(S0(i)) to the
moving surface S s as:

|Ps(φs(S0(i)))− φs(S0(i))| = |Ds(φs(S0(i)))| (6.10)

Based on this closeness measure, a variational formulation is used for estimating
Ũ s

as a minimizer of the functional:

E [S0,Ds, Ũ s
] = EM[S0,Ds, Ũ s

] + αER[Ũ
s
]

=
∫
Ω

(
Ds(S0(i) + Ũ s

(i)
)2

+ α‖JŨ s(i)‖2
F

)
di, (6.11)

where ‖JŨ s(i)‖2
F denotes the Frobenius norm of the Jacobian of the deformation

field Ũ s
and α is a regularization weight. The matching term EM ensures that

φs(S0) ≈ S s whereas the regularization term ER is a smoothness prior.

6.4.2 Non-rigid Registration of Distance Transforms

In the previous section, one body shape was transformed to an implicit represen-
tation via its corresponding distance transform. This allowed to derive a metric
to quantify the distance between two shapes, however the governing principle is
still a point-to-surface distance measure. A different approach is to represent both
shapes with their distance transforms and to apply intensity based volumetric reg-
istration techniques. This can be formulated with a generic model according to:

E [D0,Ds, Ũ s
] = EM[D0,Ds, Ũ s

] + αER[Ũ
s
]. (6.12)

Again, EM is a similarity metric and ER is a regularization term that accounts for
a smooth deformation field. There have been numerous approaches published for
both the similarity metric as well as the regularization term and, in general, each
have their advantages and drawbacks or may be limited to certain applications.
For a review the reader is referred to the preceding related work section and the
overview by Zitova and Flusser [Zito 03] or Sotiras et al. [Soti 13].

For the registration of body surface shapes represented by their corresponding
distance transforms, the level-set motion method proposed by Vemuri et al. [C 03]
has been found to be suitable in this thesis. This method does not provide the
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displacement field directly but instead performs a level-set evolution to compute a
mapping between intensities in both images. The geometric warp and smoothness
of the deformation fields is eventually derived during numerical computation of
the corresponding partial differential equation.

This registration scheme is potentially beneficial for RI surface deformation
estimation as the image subject to registration evolves approximately along the
normal of the level-set that is the gradient of the distance transform, i. e. for the
t-th optimization step:

D0(x, t + 1) =
(
Ds(x)−D0(x, t)

)
‖∇D0(x, t)‖. (6.13)

Note that this registration scheme favors deformation components along surface
normals as they are equivalent to gradients in the distance transform.

6.4.3 Non-rigid Point Set Registration

Though being fundamentally different from a methodological point of view, the
preceding approaches are eventually surface registration schemes, i. e. they rely
on a continuous representation of the body. However, as outlined in Section 6.3,
this cannot be taken for granted and point sets are a more generic representation.
As outlined in Section 5.2 for range data fusion, there exist methods for approx-
imating distance transforms from point sets [Hopp 92], however, such methods
require the surface to be sampled appropriately. A different approach is to register
the discrete set of points directly thus superseding any intermediate data represen-
tations. Recent methods that have been proposed for this task represent the point
sets as Gaussian mixture models (GMMs) and the registration is formulated to
minimize a distance or divergence criterion between mixture densities. For a tax-
onomy of these approaches the reader is referred to the work of Jian and Vemuri
[Jian 11]. In this thesis the focus is on the Coherent Point Drift (CPD) framework
[Myro 10] where only one point set is represented as a GMM. This framework will
be detailed in Chapter 7 for motion model registration and this section thus only
provides a very brief description for non-rigid point set registration.

The general idea is that if the fixed point set P0 is represented as a GMM then
the probability p of a moving point xs

i ∈ P
s w. r. t. the GMM is given as:

p(xs
i ) = ∑

x0
i

p(φs(x0
i )) exp(−σ−2‖xs

i − φs(x0
i )‖2

2), (6.14)

where the fixed points x0
i form the GMM centroids locations with σ2 denoting the

variance of the Gaussian normal distribution. The sought transformation φs(·) can
be estimated by minimizing the negative log-likelihood function:

EM[P0,P s, φs, σ] = −∑
xs

i

log ∑
x0

i

p(φs(x0
i )) exp(−σ−2‖xs

i − φs(x0
i )‖2

2). (6.15)

For enforcing a smooth deformation this matching term is incorporated in a regu-
larized framework according to:

E [P0,P s, φs, σ] = EM[P0,P s, φs, σ] + αER[φ
s], (6.16)



6.5 Dimensionality Reduction Techniques 85

where ER is a weighted regularization term that regularizes the deformation φs by
minimizing scaled coefficients of its corresponding Fourier transform [Myro 10],
i. e. high frequencies that correspond to discontinuities in the deformation are pe-
nalized.

6.5 Dimensionality Reduction Techniques

Recovering the intrinsic dimensionality of the training data is the fundamental
step for generating motion models. The dimensionality reduction techniques used
for this purpose can either be applied to the deformed surface points ps = L(P s)
or the corresponding displacement field us = L(U s) with s = 1, . . . , S. If the data
is mean-centered then both formulations coincide. Dimensionality reduction tech-
niques can be grouped in linear and non-linear methods. The following sections
outline and discuss dimensionality reduction strategies that have been identified
as promising for respiratory motion analysis.

6.5.1 Linear Methods

The most well known methods for linear dimensionality reduction are PCA also
known as the Karhunen-Loève Transform and Linear Discriminant Analysis (LDA)
that is originally known as Fisher mapping [Duda 00]. LDA aims for maximizing
inter-class distances and thus is a potential candidate for classification and sep-
aration of distinct respiratory motion patterns such as thoracic and abdominal
breathing. However, LDA is a supervised method for a discrete set of classes and
thus not investigated further. In fact, as shown later, extensions to conventional
PCA allow for an automatic and unsupervised classification or separation of these
breathing patterns. Thus the focus of linear methods for dimensionality reduction
techniques in this thesis is on PCA.

PCA One interpretation of PCA is finding a set of mutually orthonormal vectors
ei ∈ H that allow to reconstruct the set of training samples {p1, . . . , pS}, ps ∈ H
in a least squares sense. This is done by an eigen-decomposition of the covariance
matrix C of the mean-centered training data defined as:

C =
S

∑
s=1

(ps − p)(ps − p)> , p =
1
S

S

∑
s=1

ps. (6.17)

The eigen-vectors el often referred to as modes of variation that correspond to the L
largest eigen-values λl of C now define the model basis as:

Φ = [e1, . . . , eL] ∈ R3N×L. (6.18)

Defining the number of modes L smaller than the number of samples S is the
dimensionality reduction step. Commonly, L is chosen such that Φ yields an ap-
propriate reconstruction error w. r. t. the training data. This is equivalent to retain
a portion of variance in the input data, i. e. ∑L

l=1 λl ≥ δ ∑S
l=1 λl with δ ∈ [0, 1] close

to 1 for maximal variance.
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Now, given a point set p ∈ H that must not necessarily be contained within the
training data, its approximation w. r. t. the PCA basis Φ is traditionally computed
according to:

p ≈ p + Φ
(

Φ> (p− p)
)
= p + Φb, (6.19)

where b ∈ RL denotes the low-dimensional representation of p and will be re-
ferred to as model parameter in this thesis. Essentially, Eq. (6.19) can be derived as
the least squares estimate regarding point-wise Euclidean distances between cor-
responding points in the model basis and the test point-set. Alternative strategies
that employ different distance metrics and robust estimators dedicated to RI data
are investigated in Section 7.3.

To permit valid shapes only, the individual components bl of the model param-
eter b are commonly restricted based on the corresponding variances λl as:

bl ∈ [−3
√

λl,+3
√

λl], (6.20)

i. e. ∼ 99% of all shapes can be synthesized by the model when interpreting PCA
as a multivariate normal distribution estimator with standard deviations

√
λl.

Though this property does not necessarily hold true for respiration samples, these
bounds were found to be reasonable in this thesis and in preceding work [Wasz 16].

For unseen data that is not contained within the training set PCA thus allows
for a straightforward computation of the low-dimensional representation with-
out having to re-compute the mapping. Further, the reconstruction of a high-
dimensional point in the original space H can be performed using a closed-form
solution. These two aspects are commonly referred to as the out-of-sample and pre-
image problem, respectively. As discussed later in Section 6.5.2 these problems
constitute serious challenges for non-linear dimensionality reduction techniques
and often only approximations are possible.

Sparse Motion Modes One drawback of conventional PCA is that the model ba-
sis Φ eventually denotes an orthogonal transformation of the original canonical
basis in a way that minimizes the reconstruction error w. r. t. the training samples
ps. Thus, the individual components of the modes el that are also known as load-
ings do not necessarily exhibit sparsity and in fact represent global abstract defor-
mations that do not allow for an intuitive interpretation or distinct anatomically
plausible breathing patterns.

One solution to this problem that was published in preceding work [Wasz 12a,
Wasz 16] is to perform an additional rotation R ∈ SOL according to Φ′ = ΦR such
that the new spanning vectors stored column wise in Φ′ exhibit sparsity.

From factor analysis it is known that well-defined rotations of a PCA model
basis are means to generate a more simple structure [Kais 58]. The class of so-
called Orthomax Rotations aims for generating such a more simple structure. A
special case are Varimax rotations (VRs) [Steg 06] that estimate the sought rotation
RVR to maximize:

RVR = argmax
R

L

∑
l=1

 3N

∑
q=1

[ΦR]4l,q −
(

3N

∑
q=1

[ΦR]2l,q

)2
 . (6.21)
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Essentially, this corresponds to a maximization of the variances of squared loadings
across the modes of variation e′l contained column-wise in Φ′ = ΦRVR. Due to the
orthonormality constraints on R the only possibility to maximize Eq. (6.21) is to
find a rotation R that brings several squared loadings [ΦR]2l,q close to zero and
make others grow large [Steg 06]. Naturally, this favors sparse modes.

For respiratory motion analysis one issue arises from the fact that the rota-
tion optimization problem from Eq. (6.21) rigorously enforces sparsity exclusively
w. r. t. the scalar-valued components of the original modes el. As by definition all
modes el have unit length, i. e. ‖el‖2

2 = 1, this scheme neglects the original vari-
ances that are given by the eigenvalues λl. Thus, important information about
the magnitude of respiration induced displacements is not incorporated into the
sparse motion mode. This is of particular importance if the number of modes is
chosen in a way that several modes with minor importance are obtained.

As demonstrated in preceding work [Wasz 16], one option to cope with this
problem is to incorporate an additional weighting matrix Λ ∈ RL×L in the VR
optimization process to yield a weighted Varimax rotation (WVR) basis as:

RWVR = argmax
R

L

∑
l=1

 3N

∑
q=1

[ΦΛR]4l,q −
(

3N

∑
q=1

[ΦΛR]2l,q

)2
 . (6.22)

For Λ = diag(1, . . . , 1), Eq. (6.22) corresponds to the original VR principle from
Eq. (6.21). Setting Λ = diag(

√
λ1, . . . ,

√
λL), Eq. (6.22) maximizes the variance of

the squared loadings weighted by mode-specific standard deviations defined by
the eigenvalues λl. The rationale behind this scheme is that the eigenvalues are
directly related to the amount of shape variation in the training samples. By de-
sign, the samples correspond to distinct respiration states with varying degrees of
external surface deformation and breathing magnitude. Thus, sparsity w. r. t. the
respiration magnitude is injected in the WVR model.

For optimization of Eqs. (6.21) and (6.22), an iterative scheme employing singu-
lar value decompositions can be used [Steg 06]. One issue here is that the rotated
basis ΦWVR = ΦΛRWVR is in general not orthogonal. This can be addressed by
computing the WVR using the weighting matrix according to Eq. (6.22) and com-
pute the WVR basis without the weighting matrix as ΦWVR = ΦRWVR [Wasz 16].

6.5.2 Non-linear Methods

One problem with PCA and related techniques is that they are often not able to
recover the true intrinsic dimensionality or the manifold that governs the training
data. This follows directly from their linear mathematical foundations. In contrast,
non-liner method are often capable to analyze such arbitrarily structured data in
a meaningful way. One differentiation criterion for non-linear methods is if they
aim to preserve the global properties of the input data or if they solely aim for
preserving local properties. The inherent problem with local methods such as LLE
[Rowe 00] or Laplacian Eigenmaps [Belk 03] in the respiratory motion scenario at
hand is the limited number of training samples. For example, if the surfaces are
extracted from volumetric planning data such as MRI, the number of available
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Figure 6.2: Kernel matrices K for different kernels (left to right) and two human
subjects (rows). Linear κ(pi, pj) = 〈pi, pj〉, polynomial κ(pi, pj) = (〈pi, pj〉 +
r)d and RBF kernels κ(pi, pj) = exp(−σ−2‖pi − pj‖2

2) are shown. Note the two
distinct breathing patterns that appear as diagonal blocks from top-left to bottom-
right in K.

samples is typically not larger than 15 [Grim 15]. Thus, there is no meaningful dif-
ferentiation between global and local properties. In fact, from a technical point of
view, local methods require nearest-neighbor graphs as with LEMs or are based on
reconstructing samples based on a linear-combination of neighboring data points
as with LLE. For a small number of training samples, the expressiveness of such
concepts is rather limited and the resulting optimization problems are often ill-
conditioned or similar to that of local methods. Thus, this thesis only discusses
KPCA as a global method for non-linear dimensionality reduction.

Kernel PCA The governing idea with kernel-based methods is that problems
such as data separation or dimensionality reduction that cannot be tackled with
linear methods in the original data space can be handled well with linear tech-
niques in a high-dimensional feature space. Consequently, the principle of KPCA
[Scho 98] is to perform PCA not directly in the input space but instead in a high-
dimensional possibly infinite-dimensional feature space.

Omitting details that for example can be found in [Mika 98], by using the so-
called kernel-trick, there is no need to compute the mapping to the high dimen-
sional space explicitly and KPCA can be formulated based on the eigen-decomposition



6.6 Experiments and Results 89

of the Gramian Matrix G = (gi,j) ∈ RS×S that holds the implicitly computed inner
products of mean centered data points in feature space as:

gi,j = ki,j −
1
S

S

∑
s=1

ki,s −
1
S

S

∑
s=1

ks,j +
1
S2

S

∑
s=1

S

∑
s′=1

ks,s′ , (6.23)

where the elements ki,j of the Kernel Matrix K ∈ RS×S are defined as:

ki,j = κ(pi, pj), (6.24)

and κ(·, ·) is a suitable kernel function [Scho 02]. Typical kernels are the linear ker-
nel for which KPCA equals conventional PCA, polynomial kernels and radial basis
function (RBF) kernels. Exemplary kernel matrices are depicted in Fig. 6.2. Lin-
ear and polynomial kernels encode the angles between displacement fields simi-
lar to the condition metric discussed in Section 6.3.2. RBF kernels correspond to
a smoothed sum of squared distances across corresponding surface points. As
with traditional PCA only the L largest eigen-values λl with corresponding eigen-
vectors el ∈ RS of G are used for dimensionality reduction.

Given a surface that is not necessarily contained in the training set and that
is represented as vectorized point set p ∈ H, its low dimensional representation
b ∈ RL can be computed via the Nyström extension [Will 00, Beng 03, Aria 07] as:

bl =
1√
λl

S

∑
s=1

κ(ps, p)[el]s. (6.25)

KPCA is thus capable to handle the out-of-sample problem, however, compared to
traditional PCA the computation complexity is substantially increased.

In contrast, solving the pre-image problem with KPCA is not directly possible
and common methods employ non-linear optimization [Mika 98], distance con-
straints in a multi-dimension-scaling framework [Kwok 04], or the Nyström exten-
sion [Aria 07]. These techniques have in common that they are computationally
expensive and thus hard to handle in a real-time scenario. Thus, non-linear meth-
ods will not be investigated further in this thesis.

6.6 Experiments and Results

The experiments are divided into two parts. First, the non-rigid surface registra-
tion techniques from Section 6.4 for matching different respiration states are dis-
cussed and the condition for displacement fields as introduced in Section 6.3.2 is
investigated. The second part covers the proposed motion models with a focus on
the sparse linear WVR approach from Section 6.5.1.

6.6.1 Body Surface Displacement Fields

The first part of this evaluation is concerned with the assessment of body surface
deformation fields to form the training data that is used to generate 4-D motion
models. The evaluation is performed for surface data obtained from real-life RI
data of healthy subjects and synthetic data from the NCAT phantom.
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(a) Sagittal, coronal and transverse planes. (b) Extracted surface mesh.

Figure 6.3: The 4-D NCAT phantom. For synthetic RI data a body surface mesh
(right) is extracted from the volumetric data (left) by segmenting air and apply-
ing the marching cubes algorithm. Respiratory motion is simulated by generating
different instances of the phantom.

Experimental Setup

Real life RI data for this experiment was acquired using the multi-view RI frame-
work from Chapter 5. For the sensor characteristics and the general setup with
the four healthy subjects, see Section 5.5.2. The subjects were asked to perform
one cycle of thoracic and abdominal breathing, respectively. Each cycle was then
sampled with 1 Hz which corresponded to 5–7 different respiration states for the
individual sequences, see Table D1 for a detailed listing. This sparse temporal
sampling was purposely used to stress the fact that the motion models as used in
this thesis are generic in a sense that no specific modality to capture surface data
from different respiration states is required. For example, 4-D tomographic plan-
ning data commonly provides a limited number of different respiration states due
to binned reconstruction schemes, radiation exposure with CT or acquisition time
with MRI.

The raw surfaces reconstructed with the multi-view RI approach consist of ap-
proximately 3.6× 105 3-D points. The surfaces were cropped to a region of interest,
subsequently resampled using a quadric edge collapse strategy and finally pro-
cessed using Laplacian smoothing. Again, the motivation here is multi-modality
which requires the employed algorithms to be robust w. r. t. different spatial sam-
pling, mesh topology and partial matching issues. This resulted in meshes that
consist of approximately 1.0× 104 3-D points to form the training data.

For the virtual test environment surface data extracted from the NCAT phan-
tom [Sega 01] was used. The NCAT phantom utilizes 3-D non-uniform rational
B-Spline models of torso organs and the body to simulate cardiac and respiratory
motion. The phantom yields a volumetric representation similar to a CT scan, see
Fig. 6.3a for an illustration. The body surface was then extracted by first segment-
ing external air and subsequently applying the marching cubes algorithm [Lore 87]
to generate an explicit surface representation, see Fig. 6.3b. Similar to the real-life
data, the meshes were cropped to a region of interest that covers the torso and
subsequently resampled using a quadric edge collapse strategy. The final meshes
for the NCAT phantom consist of approximately 4.0× 103 3-D points.
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Due to the high coverage surface data that are inherent to both the NCAT
model as well as the data reconstructed with the multi-view RI framework, the
dedicated RI surface registration scheme from Section 6.4.1 to compute displace-
ment fields U s matching different respiration states was not applicable. This is
due to the fact that the method requires a standard pinhole camera model that is
not available with high coverage surface data, cf. Section 5.4. Instead, the distance
transform registration (DTR) using the level-set motion registration scheme from
Section 6.4.2 for shapes represented as distance-transforms and the CPD point-set
registration method outlined in Section 6.4.3 were used. The state of exhaled was
chosen as reference.

Results

First, results are reported for the different surface matching techniques. This in-
cludes a visual inspection and plausibility analysis as well as a quantitative anal-
ysis of the registration errors. Next, the results for the condition of surface defor-
mations are reported.

Elastic surface deformations Qualitative results for typical real-life body sur-
face displacement fields are given in Fig. 6.4. The graphic further illustrates the
difference between the DTR and the CPD registration schemes. Though the same
respiration states and surface data were used for both methods, the resulting dis-
placement fields are substantially different. In fact, the underlying matching forces
as well as the regularization terms that govern the two registration approaches are
fundamentally different and constitute one reason for the different displacement
fields. However, common deformation patterns such as locally stationary regions
or similar motion directions and coinciding deformation magnitudes are visible.
From a visual inspection the displacement fields obtained by the DTR method ap-
pear more reasonable compared to the CPD approach. This is due to the fact that
the CPD displacement fields exhibit distinct vortices or opposed motion directions
(cf. lateral region Fig. 6.4e) and unrealistic attracting points (cf. abdominal region
Fig. 6.4f). In contrast, there are much less visible artifacts with the deformation
fields obtained by the DTR method. However, this is no guarantee for anatomical
plausibility.
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(a) DTR UT1 . (b) DTR UT2 . (c) DTR UA.

(d) CPD UT1 . (e) CPD UT2 . (f) CPD UA.

Figure 6.4: Exemplary depiction of body surface deformation fields U using DTR shown in the top row and non-rigid CPD
shown in the bottom row. Depicted are the displacements for two thoracic (T1, T2) and one abdominal (A) respiration state for
one subject. The displacement magnitude in [mm] is color coded. For visualization, the displacement vectors are magnified by
a factor of two.
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Displacement Magnitude [mm] Residual Distance [mm]

Q1 Q2 Q3 Q1 Q2 Q3

P DTR 1.04± 0.63 3.40± 2.39 5.17± 3.71 0.01± 0.01 0.02± 0.01 0.04± 0.02
CPD 3.16± 1.47 5.23± 2.56 7.09± 3.56 0.07± 0.03 0.14± 0.06 0.26± 0.11

S1
DTR 2.15± 1.48 3.78± 2.80 6.43± 3.40 0.11± 0.08 0.24± 0.18 0.45± 0.33
CPD 4.10± 2.29 6.28± 3.51 9.26± 3.39 0.28± 0.16 0.60± 0.34 1.04± 0.56

S2
DTR 2.52± 2.69 4.36± 4.00 6.46± 5.29 0.06± 0.04 0.14± 0.08 0.26± 0.15
CPD 5.47± 4.05 8.20± 5.75 10.4± 6.51 0.18± 0.08 0.39± 0.17 0.70± 0.29

S3
DTR 1.02± 0.67 2.24± 1.71 4.53± 3.04 0.06± 0.03 0.14± 0.06 0.27± 0.12
CPD 3.11± 1.85 4.73± 3.09 6.35± 3.66 0.18± 0.07 0.39± 0.16 0.71± 0.29

S4
DTR 3.93± 3.23 6.25± 5.26 7.94± 6.28 0.07± 0.04 0.15± 0.09 0.27± 0.17
CPD 5.10± 3.68 7.80± 5.90 9.60± 6.52 0.19± 0.10 0.41± 0.22 0.72± 0.38

Table 6.1: Non-rigid surface registration statistics for the DTR and the CPD meth-
ods. Reported is the residual error as the point-wise distance of the warped tem-
plate points to the reference surface. The magnitude of the estimated displace-
ments are provided for comparison. The first three quartiles are computed across
the body surface and averaged over the training samples for four male subjects
S1-S4 and the NCAT respiration phantom (P).

To quantify the difference of the two investigated registration approaches and
to assess their general capability to match surfaces from different respiration states
the residual error defined as the point-to-surface distance between the warped
template point-set to the fixed reference surface is analyzed. The results are out-
lined in Table 6.1 along with the corresponding average displacement magnitudes
for comparison. Again, a substantial difference between the DTR approach and
the CPD method is noticeable. This applies for both the residual error as well
as the estimated displacement magnitude. For all experiments, the CPD method
yields a higher residual error compared to the registration based on distance trans-
form. At a first glance, similar to the visual inspection of the deformation fields
depicted in Fig. 6.4, the higher residual error with the CPD scheme indicates infe-
rior performance. However, this is a numerical evaluation that does not account
for anatomical plausibility of the deformation fields. Further, the residual error as
evaluated in this experiment is closely related to the error function that is mini-
mized with the DTR approach. Thus, there is a potential bias towards accepting
the DTR method.

Recalling the noise level and quantization steps in the scale of ∼ 1 mm for the
Kinect RI device (cf. Section 4.7), both registration approaches provide an appro-
priate match with an average Q2 residual error < 1 mm. For the NCAT phantom
the residual error is considerably smaller. This is due to the fact that the surfaces
extracted from the NCAT phantom are a coarse approximation of the human torso
that do not feature salient landmarks, see Fig. 6.3b. Further, the synthetic data
does not exhibit noise, quantization steps or artifacts that are typical with RI. Thus,
a smooth deformation that closely matches the surfaces is easy to obtain. In con-
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(a) UT. (b) KSP(UT). (c) KRE(UT).

(d) UA. (e) KSP(UA). (f) KRE(UA).

Figure 6.5: Illustration of body surface deformation fields for thoracic (UT, top)
and abdominal (UA, bottom) breathing along with the corresponding condition
metrics KSP and KRE evaluated for five different surface regions R1 ⊂ R2 ⊂ R3 ⊂
R4 ⊂ R5. These regions correspond to varying degrees of body coverage that are
typical with different field of views in range imaging. The respiration magnitude
in [mm] is color coded, the displacement vectors are magnified by a factor of two
for visualization.

trast, a close match for real-life data is commonly not possible due to smoothness
constraints on the deformation that is enforced by the regularization term.

Due to more reasonable deformation fields and better surface match the re-
mainder of this chapter is concerned with the displacement fields that have been
computed with the DTR method.

Condition of surface deformations The surface deformations obtained from the
DTR method are now quantitatively assessed by using the condition metrics KSP
and KRE as proposed in Section 6.3.2 of this chapter. For this purpose, the body
surfaces are divided into five different regions with varying degrees of body cov-
erage. In practice, these regions correspond to different field of views of RI sensors
with the largest coverage requiring a multi-sensor setup, cf. Chapter 5.

An exemplary depiction of thoracic and abdominal displacements along with
the corresponding condition metrics is given in Fig. 6.5. For both respiration pat-
terns and metrics a higher body coverage increases the condition metric and thus
indicates more robust displacement fields that are different from translation (KSP)
and rigid body transformations (KRE), respectively. This relationship between the
body coverage and the condition metric reflects the anthropomorphic consider-
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R1 R2 R3 R4 R5

P KSP 0.45± 0.02 0.51± 0.00 0.60± 0.01 0.63± 0.01 0.67± 0.01
KRE 0.15± 0.01 0.29± 0.03 0.48± 0.06 0.57± 0.06 0.64± 0.05

S1
KSP 0.29± 0.18 0.34± 0.15 0.39± 0.14 0.43± 0.13 0.49± 0.11
KRE 0.28± 0.10 0.38± 0.06 0.48± 0.04 0.56± 0.04 0.67± 0.07

S2
KSP 0.27± 0.07 0.38± 0.05 0.43± 0.06 0.45± 0.07 0.49± 0.07
KRE 0.38± 0.16 0.48± 0.13 0.56± 0.07 0.61± 0.07 0.68± 0.08

S3
KSP 0.43± 0.16 0.46± 0.16 0.51± 0.13 0.52± 0.11 0.54± 0.08
KRE 0.44± 0.14 0.47± 0.12 0.56± 0.10 0.62± 0.09 0.68± 0.10

S4
KSP 0.18± 0.09 0.29± 0.12 0.33± 0.10 0.37± 0.10 0.41± 0.10
KRE 0.22± 0.15 0.35± 0.14 0.46± 0.11 0.56± 0.09 0.62± 0.09

Table 6.2: Condition metricsKSP,KRE to quantify the fitness of body surface defor-
mation fields U s computed with the DTR method. The metrics are evaluated for
five different body surface regions R1 ⊂ R2 ⊂ R3 ⊂ R4 ⊂ R5, cf. Fig. 6.5. The con-
dition metrics are averaged across training deformation fields that include both
thoracic and abdominal breathing. Reported are the metrics for four male subjects
S1-S4 and the NCAT respiration phantom (P).

ations in Section 6.3.2. By increasing the coverage, stationary regions and body
parts that move in opposing directions are present in the displacement field and
effectively increase the condition metric. Such regions are visible for the displace-
ment fields depicted in Figs. 6.4 and 6.5. In particular, lateral body regions con-
tribute to an increased condition metric.

More detailed quantitative results for the condition metrics for all subjects in-
vestigated in this section are provided in Table 6.2. Again, a higher body coverage
corresponds to an increased condition metric. To quantify this relationship the
Spearman’s rank correlation coefficient (RCC) was computed between the region-
wise condition metrics and the number of displacement vectors in the correspond-
ing regions as a body coverage surrogate assuming approximately equidistant sur-
face sampling. The RCC was favored over the standard PCC to account for the po-
tential non-linear relationship between the assessed variables. Across all subjects
S1-S4 and training samples, this resulted in statistical significant (p ≤ 0.05) aver-
age RCCs of ρSP = 0.90± 0.31 and ρRE = 0.99± 0.02 for the KSP and KRE metric,
respectively.

One reason for the inferior performance of the average KSP condition metric
is its inherent inability to account for rotations. Thus, some training samples and
regions are erroneously assigned a high condition number. This is reflected in the
higher standard deviation compared to the RCC of theKRE metric. An example for
such critical displacement fields is depicted in Fig. 6.4c. The surface deformation
exhibits a strong outward directed abdominal component and an inward directed
thoracic component. Such a deformation cannot be modeled by translations only,
however, a rotation with pivot in the upper abdominal region can approximate
this pattern to a certain degree. By design, the KRE condition metric accounts
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PCA VR WVR

l = 1 l = 2 l = 3 l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

P λ′l 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Λl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

S1
λ′l 0.79 0.19 0.01 0.68 0.19 0.12 0.76 0.22 0.02
Λl 0.79 0.98 0.99 0.68 0.88 0.99 0.76 0.98 0.99

S2
λ′l 0.76 0.23 0.00 0.38 0.28 0.33 0.72 0.28 0.01
Λl 0.76 0.99 0.99 0.38 0.66 0.99 0.72 0.99 0.99

S3
λ′l 0.67 0.31 0.01 0.50 0.44 0.05 0.53 0.46 0.01
Λl 0.67 0.98 0.99 0.50 0.94 0.99 0.53 0.98 0.99

S4
λ′l 0.85 0.11 0.03 0.56 0.13 0.30 0.84 0.12 0.03
Λl 0.85 0.96 0.99 0.56 0.68 0.99 0.84 0.96 0.99

Table 6.3: Dimensionality reduction key figures for different motion model gen-
eration techniques. Shown are the relative variances λ′l = λl/ ∑S

s=1 λs along with
their cumulative values Λl = ∑l

s=1 λ′s. Reported are the results for four male sub-
jects S1-S4 and the NCAT respiration phantom (P).

for this issue and yields the expected value. In fact, the high average RCC of 0.99
along with a low standard deviation of 0.02 for theKRE metric are strong indicators
that the relationship between the condition metric and the body coverage can be
described using a monotonic function, i. e. increasing the body coverage yields
more robust deformations w. r. t. the fitness principle discussed in Section 6.3.2.

6.6.2 Sparse Linear Motion Models

The second part of the experiments in this chapter is concerned with the evalu-
ation of the proposed sparse linear motion model. Again, the evaluation is per-
formed for surface data obtained from the NCAT phantom and real-life RI data
from healthy volunteers.

Experimental Setup

The training displacement fields that are required for building the motion model
are computed with the DTR approach, cf. Section 6.6.1. As motivated in Sec-
tion 6.3.2, Procrustes alignment is purposely not applied to the training data in
order to retain affine components in the displacement fields that would otherwise
be erroneously classified as rigid patient movement. The intrinsic dimensionality
of the motion models was set to L = 3. This number was determined by analyzing
PCA results of the investigated subjects and the NCAT phantom to yield a cumu-
lative variance ≥ 99%. For computing the WVR model the weighting matrix was
set to Λ = diag(

√
λ1, . . . ,

√
λL).
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(a) S2 PCA. l = 1 (left), l = 2 (middle), l = 3 (right).

(b) S2 VR. l = 1 (left), l = 2 (middle), l = 3 (right).

(c) S2 WVR. l = 1 (left), l = 2 (middle), l = 3 (right).

Figure 6.6: Exemplary depiction of the three leading modes of variation el (left to
right) for different models (top to bottom). The magnitude in [mm] of the indi-
vidual displacement vectors is color coded. Shown are the models for standard
PCA, conventional VR and the WVR technique. The PCA model exhibits global
deformation modes whereas the VR models feature sparse modes of variation. The
WVR model as proposed in this thesis allows for a differentiation of thoracic and
abdominal breathing patterns.
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Results

The key figures for the different motion model generation strategies with an in-
trinsic dimensionality of L = 3 are given in Table 6.3. For the NCAT phantom one
single mode was found to be sufficient to describe external surface deformations
induced by respiratory motion. Along with the registration accuracy found in the
previous section, this confirms the fact that external surface deformations with the
NCAT phantom only provide a simplified motion model unable to fully reflect
the complex human respiration system. In contrast, for real-life data, three modes
of variation are required to explain ∼ 99% of the total variance. However, the
variances are considerably different for the individual models. For the standard
PCA model, the cumulative variances coincide with the interpretation of PCA to
maximize the variance of training samples projected onto the principal axes el.
In contrast, the conventional VR model inherently produces sparse principal axes
that necessarily have less explained variances. In fact, the conventional VR model
requires all three modes to yield a model that accounts for > 95% with the amount
of explained variance in the two leading modes dropping below 70% for subjects
S2 and S4. Additionally, for these two subjects there is no monotonic increase in
the individual variances, i. e. the second mode accounts for less variability com-
pared to the third mode. This is a common issue with VR models and different
sorting strategies have been proposed [Steg 06]. In contrast, the third mode with
standard PCA and the proposed WVR model is considerably less important than
the leading modes and most likely corresponds to artifacts in the training data.

A graphical representation of the motion modes that are obtained with the dif-
ferent model generation techniques is given in Fig. 6.6 for subject S2. These results
coincide with the cumulative variances outlined in Table 6.3. The PCA model
yields two important modes that exhibit global deformations corresponding to
thoraco-abdominal breathing. In contrast, the conventional VR model produces
three sparse motion modes that are hard to interpret from an anatomical point of
view. Though exhibiting sparsity, the individual modes show no locality as there
are distinct clusters with high displacement magnitude spread across the entire
body surface. As outlined in Section 6.5.1 these observations can be directly linked
to the nature of varimax rotations that rigorously enforce sparsity. Finally, the pro-
posed WVR model yields two modes that correspond to abdominal and thoracic
breathing. Thus this model exhibits sparsity as well as locality which is a desirable
property for respiratory motion analysis. The leading two modes of variation for
the PCA and the WVR model for the other subjects are shown in Fig. 6.7.

6.7 Discussion and Conclusion

This chapter was concerned with the foundations of 4-D shape priors for respi-
ratory motion analysis. In particular, the basic strategies to set up sparse surface
motion models, non-rigid surface registration schemes to match different respira-
tion states, quantitative methods to assess elastic surface displacement fields for
respiratory motion analysis and dimensionality reduction techniques to set up a
surface motion model have been investigated.
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(a) S1 PCA. l = 1 (left), l = 2 (right). (b) S1 WVR. l = 1 (left), l = 2 (right).

(c) S3 PCA. l = 1 (left), l = 2 (right). (d) S3 WVR. l = 1 (left), l = 2 (right).

(e) S4 PCA. l = 1 (left), l = 2 (right). (f) S4 WVR. l = 1 (left), l = 2 (right).

Figure 6.7: The two leading modes of variation el for conventional PCA and the proposed WVR model for subjects S1,S3 and
S4. The third mode is omitted as it is of minor relevance, cf. Table 6.3. As with the modes for S2 that are depicted in Fig. 6.6 the
WVR model exhibits sparse motion modes that correspond to thoracic and abdominal movement.
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One key finding in the experiments is that different non-rigid registration tech-
niques can be used to compute dense displacement fields to describe surface de-
formations induced by respiratory motion. However, different registration tech-
niques yield substantially different displacement fields. The problem with the
investigated methods and most schemes published in literature is that they are
based on point-set or surface alignment problems that do not account for match-
ing salient anatomical landmarks. Such landmarks could be generated manually
or via automatic key point selection strategies and provided as additional input for
dedicated registration methods such as proposed by Daum [Daum 11]. Further,
photometric information could be used to guide or assess the registration match
[Baue 12c]. Thus, non-rigid body surface registration schemes for respiratory mo-
tion analysis is a topic for future research that must be especially concerned with
the anatomical correctness of displacement fields. This also includes the incorpo-
ration of photometric information or salient landmarks into the motion models.

Regardless of the actual non-rigid registration techniques, this chapter intro-
duced condition metrics to quantitatively assess the fitness of respiration induced
body surface deformations for respiratory motion analysis. The results show that
an increased body coverage allows to compute displacement fields that enable a
robust differentiation between linear shifts and rotations caused by global patient
movement on the one hand and respiratory motion on the other hand. In fact, the
results demonstrate a correlation between the body coverage and the condition of
the deformation fields. This motivates the usage of multi-view RI as proposed in
Chapter 5. Further, future methods for model generation may incorporate the con-
dition metric directly. For example, assigning each surface a weight proportional
to the surface’s condition metric would allow to use the weighted PCA framework
proposed by Kriegel et al. [Krie 08] for a more robust model generation.

A major part of this chapter was devoted to motion model generation tech-
niques that use non-rigidly registered body surfaces from different respiration
states. Here, a key finding is that respiration induced external surface deforma-
tions are governed by only a few parameters. In fact, for linear models based on
PCA only two components are required to describe > 95% of the variability seen
in the training phase. This indicates that linear methods appropriately model ex-
ternal surface deformations and that non-linear techniques that commonly require
a large number of training samples are not required per se. In this regard, no more
than 15 training samples from two breathing cycles are required to build plausible
linear models.If the training shapes are extracted from volumetric planning data
with a limited number of samples, linear methods are thus suitable.

One problem with linear methods is that an intuitive and anatomical plausi-
ble interpretation of the modes of variation is not given per se. This issue was
addressed by using methods known from factor analysis. The WVR proposed in
this chapter allows for an unsupervised decomposition of the factors that gov-
ern respiration induced surface deformations into a thoracic and an abdominal
component. This reflects fundamental anatomical considerations on the human
respiratory motion system and allows for respiration analysis that differentiates
between thoracic and abdominal breathing.
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This chapter is concerned with intra-procedural respiratory motion analysis of RI
body surface data using pre-procedurally obtained 4-D shape priors as investigated
in Chapter 6. As the underlying methodological principle, a unifying framework
that models respiratory motion analysis using 4-D shape priors as a point-set reg-
istration problem is derived. This framework was previously published for the
clinical problems of motion-compensated patient alignment [Wasz 12b, Wasz 13]
and continuous respiratory motion monitoring [Wasz 16].

7.1 Motivation

Accurate patient positioning and continuous respiratory motion monitoring are
essential tasks for the success of computer assisted interventions. To support these
tasks, RI technology was proposed over the last years, see Section 2.1.1 in the in-
troductory part of this thesis for a detailed background.

Traditionally, RI based patient positioning systems establish the treatment table
transform by registering an intra-procedural body surface obtained by RI to a static
reference surface that was pre-procedurally acquired using RI or extracted from
volumetric planning data such as CT or MRI. The problem with such methods is
that they rely on rigid surface registration techniques and thus do not account for
respiration induced free-form body surface deformations. For respiration states
that do not coincide, error scales for rigid alignment up to 25 mm were reported
[Plac 12]. Hence, gated positioning is required, i. e. the patient’s current respi-
ration state must match the respiration phase of the static pre-procedural plan-
ning data. This implies the need for respiratory motion monitoring techniques to

101
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generate respiration surrogates that uniquely encode the current respiration state
w. r. t. complex body surface deformations. Further, such surrogates are an inte-
gral component for continuous beam gating or beam adjustment during radiation
delivery after the patient was correctly aligned.

For respiratory motion monitoring, RI-based external respiration surrogates
are commonly derived from the movement of local body surface regions. The
problem with such conventional methods is that they are not based on true 3-D
surface deformations but rather heuristically analyze plain 1-D depth measure-
ments to derive a low dimensional surrogate. Further, these approaches usually
require manual interaction which is potentially error prone and complicates clini-
cal workflows. The related work in Section 7.2 covers these aspects in detail.

Alternative approaches to tackle the limitations of conventional techniques aim
to generate multi-dimensional surrogates from dense displacement fields com-
puted by non-rigid surface registration techniques, cf. Section 6.3.1 and the related
work in Section 7.2. Such methods are fully automatic and provide true 3-D de-
formation analysis across the entire body surface region. However, directly gener-
ating respiration surrogates from dense displacement fields is complicated as they
contain redundant information and the integral non-redundant components must
be identified. As an important practical aspect, real-time capability is an open
issue with non-rigid surface registration.

In this chapter, the limitations of existing approaches for both patient align-
ment as well as continuous respiratory motion monitoring are addressed by a
joint framework using the principle of 4-D shape priors as introduced in Chap-
ter 6. The core concept of this joint positioning and monitoring framework is to
register the pre-procedurally trained dynamic 4-D surface motion model to the pa-
tient’s current intra-procedural RI-based body surface. First, this enables a motion
compensated patient alignment strategy that supersedes the need for a gated posi-
tioning approach. Second, the intrinsic parameters that govern the registered mo-
tion model define a non-redundant external respiration surrogate that is directly
related to body surface deformations across the entire torso.

7.2 Related Work

Relevant literature for this chapter divides into several aspects. First, point-set
registration schemes to align the motion models to RI data are outlined. Next, to
address real-time constraints, related work on efficient corresponding-point search
strategies as an integral part of the registration methods is reported. The section
concludes with previously published methods for RI-based patient positioning
and strategies to generate respiration surrogates from RI surface data are outlined.

Motion model registration From a methodological point of view the motion
model registration task can be classified as a point-set or surface alignment prob-
lem. See the related work in Section 6.2 and the techniques in Section 6.4 for details
on non-rigid surface registration. The most popular method for point-set registra-
tion is the ICP algorithm that was almost simultaneously proposed by Chen and
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Medioni [Chen 92] and Besl and McKay [Besl 92]. The basic idea behind the ICP al-
gorithm is to iteratively compute corresponding points between two data sets and
to transform one data set to minimize a distance criterion that quantifies the match
of corresponding points. Over the last years numerous extensions and improve-
ments have been proposed, see the review by Rusinkiewicz and Levoy [Rusi 01].

Important variants are robust ICP schemes that aim to account for noise, out-
liers and partial matching issues. For example, Pulli proposed to reject those pairs
of corresponding points that account for the worst n% of distances or that exhibit
incompatible complementary information such as surface normals [Pull 99]. Fur-
ther, rejecting pairs with a distance larger than the mean plus some multiple of the
standard deviation of all distances have also been proposed [Zhan 94, Masu 96].
Another method is the robust ICP by Fitzgibbon that assigns a zero weight for
points for which no suitable correspondence could be found [Fitz 03].

These robust methods have in common that they assign hard correspondences
in a single-link sense, i. e. it is assumed that each point corresponds to exactly one
point in the other data set. This assumption was relaxed by introducing soft as-
signments schemes that use correspondences between multiple points or even the
combination of all points. For example, in the so-called expectation-maximization
(EM)-ICP proposed by Granger and Pennec [Gran 02] each point in one data set is
connected to all points in the other data set and the weights are determined by a
robust version of the corresponding distances using for example a kernel function.
This basic concept was further generalized by Tsin and Kanade who formulate
the robust point-set registration problem as a so-called kernel correlation problem
[Tsin 04]. Eventually, in this scheme the registration cost function is proportional
to the correlation of two density estimates. This scheme was later extended by
Bing and Vemuri [Jian 05] to a framework that interprets the point-set registration
as aligning GMMs. A similar idea governs the CPD proposed by Myronenko and
Song [Myro 10]. In the CPD framework only one point set is represented as GMM
and the other point set is considered as data points, see Section 7.3.2 for a detailed
description. A general taxonomy and unifying framework for these robust align-
ment strategies was recently developed by Jian and Vemuri [Jian 11].

A different robust ICP variant has been proposed by Maier-Hein et al. for align-
ing low SNR ToF range data [Maie 12]. This approach tackles the limitations of
conventional ICP-like formulations that implicitly assume equal and isotropic co-
variances of the data points. A similar approach has been proposed by Balachan-
dran and Fitzpatrick [Bala 09].

Efficient Corresponding Point Search Computing corresponding points across
two data sets is a fundamental requirement for many motion model registration
schemes. Due to iterative registration schemes and thousands of points, efficient
strategies for computing correspondences are mandatory. For CPU architectures,
space partitioning data structures like k-d trees [Aken 02] have shown to be ben-
eficial. Besides space partitioning strategies, hardware acceleration using mod-
ern GPU architectures have become increasingly popular. For example, Garcia
et al. showed that a GPU-based brute-force corresponding point search is superior
to a CPU-based k-d tree look-up [Garc 08]. This is due to the parallel nature of
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the corresponding point search that can be implemented efficiently using patterns
known from the well understood problem of GPU-based matrix-matrix multipli-
cation. In contrast, conventional nearest neighbor search acceleration strategies
on the GPU are challenging due to the non-parallel and often recursive nature of
construction and/or traversal of the underlying data structures. For instance, Qiu
et al. [Qiu 09] achieved high frame-rates for GPU based k-d tree queries. However,
the construction of the tree is performed on the CPU limiting performance when
the tree must be constructed on a per-frame basis. Recently, space-partitioning
strategies being specifically designed for GPU architectures have been proposed.
One approach is the Random Ball Cover (RBC) proposed by Cayton [Cayt 10,
Cayt 12]. The basic principle behind the RBC is a two-tier nearest neighbor search,
each building on the brute-force primitive, to prune the search space.

Apart from space partitioning acceleration structures, so-called projective data
association (PDA) schemes are commonly used for aligning point clouds or surface
data [Blai 95, Benj 99, Dora 98, Rusi 02, Newc 11]. PDA schemes aim to accelerate
the corresponding point search by projecting a given query point either to an aux-
iliary data structure [Benj 99] or directly into the target mesh or range image. This
supersedes the need for a computational expensive 3-D search and allows for a
direct corresponding point retrieval by indexing as pursued in the most publica-
tions [Blai 95, Dora 98, Rusi 02, Newc 11]. This direct approach that is also known
as reverse calibration [Blai 95] gained increasing popularity with the Kinect Fusion
framework [Newc 11]. Extensions to this method include verification steps that
for example analyze mutual distances of corresponding points [Dora 98].

RI based patient positioning and respiratory motion analysis For aligning the
patient to the reference planning data, the so-called ICP algorithm [Besl 92] is the
predominant method [Scha 09, Baue 11, Plac 12]. To account for issues of the ICP
with noisy and missing RI data Lindl et al. [Lind 13] instead use a robust alignment
based on GMM matching proposed by Jian and Vemuri [Jian 11]. However, these
methods only account for fine positioning and a coarse pre-alignment is usually
required. For this purpose, feature-based approaches that are invariant to trans-
lations and rotations have been proposed. For example, Bauer et al. [Baue 11] in-
vestigate different surface descriptors for multi-modal patient pre-alignment and
report a positioning error in the scale of 1.5° and 13 mm, respectively. Placht
et al. [Plac 12] reported a superior performance of a feature-based pre-alignment
compared to conventional centroid matching as initial guess for ICP-based fine
tuning. They also investigated the stability of fine positioning w. r. t. respiratory
motion and found an error of 25 mm for a respiration magnitude of 20 mm [Plac 12].

For RI-based continuous respiratory motion analysis or respiration surrogate
generation a plurality of concepts have been proposed. The most basic approaches
rely on plain 1-D depth data as for example proposed by Fayad et al. [Faya 09,
Faya 11]. Such surrogates only account for distance changes towards the RI sensor
and do not provide anatomical plausible tracking. More advanced strategies aim
for generating a surrogate based on variations of 3-D points inside specific body
surface regions. For example, Schaller et al. [Scha 08] or Xian and Siochi [Xia 12]
derive respiration signals by fitting planes through the abdominal and thorax re-
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Figure 7.1: Motion model alignment similar to [Wasz 12b]. A model instance Pb

that reflects respiration induced deformations and a rigid-body transformation
(R, t) that accounts for the table transform must be computed such that the trans-
formed motion model is in congruence with the current RI surface data S .

gions of the body surface. Similarly, Hughes et al. [Hugh 09] generate a surrogate
by computing the volume of bounding boxes that enclose the thorax and the ab-
domen. These approaches have in common that they are heuristic body surface
partitioning strategies based on points or patches and additionally require man-
ual interaction to define the regions of interest. Further, though using 3-D surface
data, no real 3-D tracking of landmarks is provided and these methods are not
capable to describe complex surface deformations across the entire body.

To overcome the limitations of these methods, non-rigid surface registration
techniques have been proposed for respiratory motion analysis. Schaerer et al. used
a non-rigid variant of the ICP algorithm for surface matching and derived a multi-
dimensional respiration signal from the principal direction of displacement vec-
tors [Scha 12]. In contrast, Bauer et al. use a variational formulation for elastic
surface registration and proposed to use the resulting displacement field directly
as high-dimensional respiration surrogate [Baue 12b, Baue 12a]. Such high dimen-
sional surrogates can for example be used for external-internal correlation models
[Taub 14]. As an interesting approach, Bauer et al. proposed to use a photometric
registration scheme for surface matching [Baue 12c]. With regard to salient body
surface landmarks such as the mamillas, this photometric approach outperformed
a conventional registration method that is solely based on geometric information.

7.3 4-D Shape Motion Model to RI Surface Alignment

The problem for motion compensated patient alignment as well as continuous res-
piratory motion monitoring is formulated in a unifying framework in this thesis.
Mathematically, the task is to find a rotation and translation (R ∈ SO3, t ∈ R3)
as well as a model parameter vector b from Eq. (6.19) such that the transformed
model instance Pb is in congruence with the current RI surface S , i. e. :

(R̂, t̂, b̂) = argmin
(R,t,b)

|Pb|

∑
n=1

Θ
(

Rxb
n + t,S

)
, xb

n ∈ Pb, (7.1)

where Θ(·, ·) is a generic metric that quantifies the match of a transformed model
point Rxb

n + t and the RI surface S . A sketch of this problem is given in Fig. 7.1.
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Distance metrics Θ(·, ·) that are suitable for the real-time scenario at hand, includ-
ing conventional single-link point-to-point (P2P) or advanced robust multi-link
point-to-tangent (P2T) alignment, will be detailed subsequently in Sections 7.3.1
and 7.3.2.

Patient positioning and respiratory motion monitoring Interpreting Eq. (7.1)
from a clinical point of view, the rigid body transformation (R, t) accounts for
the table transform that aligns the patient to the reference state. In contrast, the
model parameter b accounts for the respiration induced deviations of the current
RI surface data to the planning state. For a fixed b, Eq. (7.1) thus corresponds to
conventional rigid patient alignment that does not account for respiratory motion.
On the other side, for fixed (R, t), Eq. (7.1) corresponds to motion monitoring of
an accurately positioned patient. Consequently, if all parameters are free, Eq. (7.1)
translates to motion compensated patient positioning.

Model-based respiration surrogates For respiration monitoring and the PCA-
based models as used in this thesis, the parameter vector b constitutes a respiration
surrogate that reflects the body surface extent. This property can be derived from
the modes of variation el contained in the model basis Φ that encode non-rigid
body surface displacements and that synthesize a new model instance as:

p = p + Φb.

See Eq. (6.19) for details and Figs. 6.7 and 7.1 for an illustration of such displace-
ments. The individual parameters are now shifted according to the model plausi-
bility criterion from Eq. (6.20) as b′l = bl + 3

√
λl. This enforces the parameters b′l to

be positive and to describe a surface extent relative to the most compact or fully ex-
hale shape allowed by the model, i. e. bl = −3

√
λl [Wasz 16]. The l-th model-based

surrogate ξM
l ∈ R+ and the joint surrogate ξM

J ∈ R+ are then given as:

ξM
l = ‖b′lel‖2 = b′l,

ξM
J = ‖Φb′‖2 = ‖b′‖2.

(7.2)

The last equalities follow directly from the unit length of el and the orthonormality
of Φ, respectively. Note that Eq. (7.2) would not hold for the raw parameters bl ∈ R

as a potential negative sign would be lost.

Optimization A well established method to solve Eq. (7.1) is an iterative scheme
that alternately optimizes for (R, t) and b [Coot 95]. The derivations of the solution
to the alternating optimization steps and the investigated alignment metrics Θ(·, ·)
are detailed in Sections 7.3.1 and 7.3.2. Regardless of a particular alignment metric,
this optimization scheme inherently requires that Φ does not represent translations
or rotations as this would lead to ambiguities, i. e. there is no clear differentiation
between global patient movement on the one side and local respiratory motion on
the other side. This issue was investigated in Section 6.3.2 by means of condition
metrics to quantify the fitness of surface displacement fields.
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(a) P2P alignment. The source points xn
are connected to their closest target point
x′n. Note that different source points may
be share the same target point.

(b) P2T alignment. The source points xn
are linked to their projection onto the corre-
sponding tangent plane at target point x′n.

Figure 7.2: Illustration of the P2P (left) and P2T (right) alignment strategies. The
blue curve denotes the target surface and the red curve represents the source sur-
face or point-set.

7.3.1 Conventional Single-Link Iterative Closest Point

In a single-link registration scheme each model point xb
n ∈ Pb is connected to ex-

actly one corresponding point x′n ∈ S to evaluate the distance metric Θ. For a fixed
model parameter b the single-link iterative optimization of Eq. (7.1) corresponds
to the ICP algorithm that has been proposed by Chen and Medioni [Chen 92] and
Besl and McKay [Besl 92]. A variety of modifications and extensions for these al-
gorithms have been published over the years, see the related work in Section 7.2.

One key difference for the various ICP variants is the alignment strategy that is
either based on a P2P [Besl 92] or a point-to-plane also known as P2T distance met-
ric [Chen 92]. These two approaches are illustrated in Fig. 7.2 and will be outlined
in the following sections.

Point-to-Point Alignment

The popular P2P metric [Besl 92] quantifies the match of a model point to the RI
surface as the squared Euclidean distance between corresponding points. A sketch
of this principle is given in Fig. 7.2a. Mathematically, the P2P metric is expressed
as:

ΘP2P
(

Rxb
n + t,S

)
=
∥∥∥Rxb

n + t− x′n
∥∥∥2

2
, (7.3)

where the corresponding point x′n is commonly computed by using a nearest neigh-
bor relation according to:

x′n = argmin
x∈S

∥∥∥xb
n − x

∥∥∥2

2
. (7.4)

However, approximative strategies for fast corresponding point computation as
discussed in Section 7.4 have also been proposed.

For the P2P distance metric there exists a closed-form solution based on unit
quaternions to estimate (R, t) [Horn 87]. As shown in prior work, this scheme
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perfectly maps to modern GPU architectures for real-time computation [Wasz 12b,
Baue 13b]. Computing the model parameter b with (R, t) fixed corresponds to the
conventional least-squares model approximation formulation from Eq. (6.19). By
using the concatenation operator from Eq. (6.2) this is expressed as:

b = Φ>
(
x′ − p

)
, x′ = L

({
x′1, . . . , x′|Pb|

})
. (7.5)

A more generic formulation is derived in Eq. (7.15) for multiple weighted corre-
spondences as a generalization of the single-link problem. Technically, Eq. (7.5)
breaks down to the computation of scalar products that can be computed effi-
ciently on GPUs using tree-based parallel reduction schemes [Harr 07].

Point-to-Tangent Alignment

A different way to measure the closeness of a point to a surface is based on the P2T
metric that was proposed by Chen and Medioni for registration of range images
[Chen 92]. This alignment strategy is depicted in Fig. 7.2b and can be formulated
as:

ΘP2T
(

Rxb
n + t,S

)
=
((

Rxb
n + t− x′n

)
· nn

)2
, (7.6)

where nn ∈ N is the surface normal associated to x′n ∈ S from Eq. (7.4).
In contrast to the P2P metric, there exists no closed-form solution for estima-

tion (R, t) and non-linear optimization techniques must be employed. However,
for small rotation angles the optimization problem can be linearized and estimat-
ing (R, t) corresponds to a linear equation system that can be solved using singular
value decomposition (SVD) [Low 04] or Cholesky decomposition (CD) [Newc 11].
As shown in Eq. (7.19) for multiple weighted correspondences as a generalization
of single-link correspondences, the model parameter vector b can be computed ef-
ficiently using CD of a positive definite matrix. The advantage of the P2T metric is
that the convergence speed is improved without a significant increase in compu-
tation cost [Fitz 03].

7.3.2 Robust Multi-Link Coherent Point Drift

The problem with the conventional single-link ICP variants from the previous sec-
tion is that they are not robust w. r. t. outliers, partial matching issues or false cor-
respondences. Proposed techniques to cope with these problems are based on
weighting and rejection of pairs of corresponding points based on heuristics, see
the related work in Section 7.2. This led to the development of dedicated tech-
niques that use a probabilistic assignment of correspondences between all combi-
nations of points. One method that falls into this category is the Coherent Point
Drift (CPD) algorithm [Myro 10] that was previously outlined in Section 6.4.3 for
non-rigid body surface registration. However, the CPD method can also be used
for a rigid-body point-set alignment and the motion model formulation can be
seamlessly integrated as demonstrated in preceding work [Wasz 16].

The general idea behind the CPD framework is to model the point set registra-
tion as a probability density estimation problem with one point set representing
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the centroids of a GMM and the second point set representing the data points. The
registration is then performed by re-parameterizing the GMM centroids xb

n ∈ Pb

to minimize the negative Log-Likelihood of the data points x′m ∈ S :

J CPD
R,t,σ = −

|S|

∑
m=1

log

 (1− w)

|Pb|

|Pb|

∑
n=1

p(x′m|Rxb
n + t) + w

1
|S|

 , (7.7)

where w ∈ [0, 1[ is a weighting factor that accounts for outliers via the uniform
distribution |S|−1. The likelihood p(x′m|Rxb

n + t) of a d-dimensional data point x′m
given a re-parameterized GMM centroid Rxb

n + t is computed as:

p(x′m|Rxb
n + t) =

1

σ
√
(2π)d

exp

(
−‖Rxb

n + t− x′m‖2
2

2σ2

)
. (7.8)

This GMM based alignment scheme is solved by the EM algorithm. As shown by
Myronenko and Song [Myro 10], this eventually leads to an iterative optimization
problem according to:

J CPD
R,t,σ =

|Pb|

∑
n=1

|S|

∑
m=1

p(R̃xb̃
n + t̃|x′m)

(
‖Rxb

n + t− x′m‖2
2

2σ2 +
d
2

log(σ2)

)
. (7.9)

The posterior probabilities p(R̃xb̃
n + t̃|x′m) of GMM centroids given the data points

are computed using the previous parameter estimates marked with a tilde as:

p(R̃xb̃
n + t̃|x′m) =

p(x′m|R̃xb̃
n + t̃)

p(x′m)
=

exp
(
− ‖R̃xb̃

n+t̃−x′m‖2
2

2σ̃2

)
∑N

k=1 exp
(
− ‖R̃xb̃

k+t̃−x′m‖2
2

2σ̃2

)
+ c

, (7.10)

where c = (2πσ̃2)
d
2 w

1−w
|Pb|
|S| follows from re-arranging the negative Log-Likelihood

objective criterion outlined in Eq. (7.7).

Generalized CPD and Parameter Estimation

The CPD framework, or more specifically its inherent iterative optimization prob-
lem from Eq. (7.9), can be interpreted as a weighted multi-link generalization
for the generic framework from Eq. (7.1). In fact, by replacing the probabilistic
weights with a hard binary assignment the standard single-link formulation is re-
tained. Further, using probabilistic weights but considering only single-links can
be interpreted as an approximation of the Kullback-Leibler divergence between two
point-sets represented as GMMs [Jian 05]. In fact, relaxing the number of corre-
spondences is an efficient strategy to speed up the CPD scheme [Myro 10]. This
generalization will be discussed in the subsequent section in the context of fast
CPD approximation for RI surface data.

However, first, the solution for the transformation (R, t) and the model param-
eter b will be outlined for the generic multi-link P2P and P2T alignment schemes.
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In the following paragraphs, x′n,m ∈ S denotes the m-th correspondence for the
n-th model point xb

n ∈ Pb. Further, terms that are constant when optimizing
w. r. t. (R, t, b) are omitted for readability.

Point-to-Point The standard CPD scheme corresponds to a weighted multi-link
P2P alignment, i. e. using ΘP2P outlined in Eq. (7.3). Thus, the CPD distance metric
for the generic registration framework from Eq. (7.1) can be derived according to:

ΘCPD-P2P
(

Rxb
n + t,S

)
=

M

∑
m=1

ωn,m

∥∥Rxb
n + t− x′n,m

∥∥2
2

σ2 +
d
2

log(σ2)

 , (7.11)

with ωn,m denoting weights that are given by the posterior probabilities from
Eq. (7.10) and M << |S| denotes the number of correspondences. For finding
the transformation (R, t) note that the multi-link formulation can be interpreted as
a generalized weighted absolute orientation problem [Myro 10] which, for exam-
ple, can be solved by using Horn’s unit quaternion optimizer [Horn 87] as with the
conventional single-link formulation.

Similarly, the solution to the model parameter b can be deduced from a cost
function using pair-wise weighted correspondences as:

J CPD-P2P
b =

|Pb|

∑
n=1

M

∑
m=1

ωn,m

∥∥∥xb
n − x′n,m

∥∥∥2

2
=

N

∑
n=1

M

∑
m=1

ωn,m

∥∥∥∥∥ L

∑
l

blxn,l − x′n,m

∥∥∥∥∥
2

2

, (7.12)

with xn,l = (e3(n−1)+1,l, e3(n−1)+2,l, e3(n−1)+3,l)
> ∈ R3 and Φ = (ei,j) follows from

the model instance synthesis in Eqs. (6.18) and (6.19). Eq. (7.12) can be written in a
more compact form using matrix-vector notation according to:

J CPD-P2P
b =

M

∑
m=1

(
Φb− x′m

)>Wm
(
Φb− x′m

)
, (7.13)

with weighting matrix:

Wm = diag(ω1,m, ω1,m, ω1,m, . . . , ωN,m, ωN,m, ωN,m) ∈ R3N×3N (7.14)

and x′m =
(

x′>1,m, . . . , x′>N,m

)>
. Computing the partial derivative w. r. t. b and equat-

ing to zero yields [Pete 12]:

M

∑
m=1

(
Φ>WmΦ

)
b =

M

∑
m=1

Φ>Wmx′m. (7.15)

For uniform weights, i. e. Wm ∝ Id, the solution corresponds to the conventional
least-squares estimator from Eqs. (6.19) and (7.5). Otherwise, b can be computed
via SVD or CD of the symmetric positive definite matrix ∑m(Φ

>WmΦ).
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Point-to-Tangent The CPD framework is also generic in a sense that it is not
bound to a specific distance metric. This idea is based on the observation that the
Log-Likelihood objective criterion from Eq. (7.8) can be seen as a robust version of
the Euclidean distance as obtained from a Gaussian kernel function. Without loss
of generality, as previously proposed in [Wasz 16], when using a robust version of
the P2T alignment, a CPD-like metric can be derived according to:

ΘCPD-P2T
(

Rxb
n + t,S

)
=

M

∑
m=1

ωn,m

(((
Rxb

n + t− x′n,m
)
· nn,m

)2

σ2 +
d
2

log(σ2)

)
,

(7.16)
and similar for the weights or posterior probabilities ωn,m as in Eq. (7.10).

As with the P2P metric, finding an optimal rotation and translation (R, t) for
the weighted multi-link P2T alignment involves the same scheme used for the
conventional single-link formulation outlined in Eq. (7.6). This follows directly
from the underlying cost function using point-wise distances. For estimating b an
optimization problem proposed in preceding work [Wasz 16] similar to the P2P
formulation from Eq. (7.12) is derived according to:

J CPD-P2T
b =

N

∑
n=1

M

∑
m=1

ωn,m

((
L

∑
l

blxn,l − x′n,m

)
· nn,m

)2

, (7.17)

where xn,l = (e3(n−1)+1,l, e3(n−1)+2,l, e3(n−1)+3,l)
> ∈ R3 similar to the P2P distance

from Eq. (7.12). Computing the partial derivative of Eq. (7.17) w. r. t. one specific
motion model parameter bk yields:

∂J CPD-P2T
b
∂bk

=
N

∑
n=1

M

∑
m=1

ωn,m

(
L

∑
l=1

blηl,n,mηk,n,m − ζn,mηk,n,m

)
!
= 0, (7.18)

where ηl,n,m = xn,l · nn,m and ζn,m = x′n,m · nn,m. For the complete model vector b
this can be expressed in matrix-vector notation as:

∑
n,m

ωn,m

η1,n,mη1,n,m · · · η1,n,mηL,n,m
... . . . ...

ηL,n,mη1,n,m · · · ηL,n,mηL,n,m

 b = ∑
n,m

ωn,m

ζn,m,η1,n,m
...

ζn,mηL,n,m

 . (7.19)

This is a linear equation system in the form Ab = c where the symmetric matrix
A ∈ RL×L is in practice positive definite which allows to solve for b efficiently by
using CD. Note that the matrix A is positive definite for weights and diagonal
elements > 0. By definition, ωn,m > 0. Further, ∑n ∑m η2

l,n,m ≥ 0. These scalars
are zero iff all motion model directions xn,l are perpendicular to the corresponding
normals nn,m. Thus, all points would move parallel to the surface which is an
invalid degenerated model that is of no relevance in practice.

Fast CPD Approximation for RI Surface Data

A crucial issue with the CPD framework is run-time performance. In particular,
linking each model point xb

n with all surface points x′n ∈ S is the major bottleneck
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in terms of computational complexity. Solutions proposed in the original work
[Myro 10] to cope with this performance problem are to use the Fast Gauss Trans-
form [Gree 91] or an approximated scheme by switching to truncated Gaussians:
instead of using all surface points x′n ∈ S for one individual model point xb

n only
a small subset of closest points x′m ∈ Sxb

n
⊂ S is considered. Similar to the original

work by Myronenko and Song [Myro 10] the rationale behind this scheme is that
the posteriors as weighting factors rapidly decay with increasing distances. Thus,
the closest points exhibit the highest weights and are the most important points for
the optimization scheme. The key step towards real-time computation is that for
a point xb

n its closest neighbors Sxb
n

can be computed efficiently using a projective
data association scheme that is inherent to the high coverage body surface models
from the multi-view fusion framework outlined in Chapter 5 of this thesis. This
approach will be detailed in Section 7.4.2 in the context of efficient corresponding
point search strategies.

7.4 Efficient Corresponding Point Search

The key aspect towards real-time capability of the investigated model registration
schemes is the corresponding point (CP) search. This applies for both the conven-
tional single-link ICP as well as the approximated multi-link CPD. In particular
for the latter strategy there is also the need to compute a set of nearest neighbors
(NNs) instead of just one single corresponding point as with the conventional ICP.
In this thesis, the CP search problem is formulated as a set of query pointsPQ given
by the transformed model instance from Eq. (7.1) for which the corresponding
database points defined by the current RI surface S have to be found.

The most trivial approach to tackle this problem is the brute force (BF) prim-
itive that tests all query points against all database points. This BF scheme has
a computational complexity of O

(
|PQ| · |S|

)
which is prohibitive in the real-time

respiratory motion analysis scenario covered in this thesis. For a typical number
of model points |PQ| ∼ 1.0× 104 and number of surface points |S| ∼ 3.6× 105

cf. Section 6.6 this would imply approximately three billion point comparisons.
Thus, efficient CP search strategies are inevitable and the following two sections
outline CP frameworks that have been identified to comply with real-time con-
straints imposed by the respiratory motion analysis scenario investigated in this
thesis.

7.4.1 Random Ball Cover

The RBC is a framework for efficient NN search that tackles the inherent perfor-
mance problem by a reduction of the search complexity as well as a computation
scheme that is suitable for the parallel architecture of modern GPUs. The RBC
framework was originally proposed by L. Cayton for high-dimensional database
queries and supports both the search for one closest point as well as the retrieval
of a set of nearest neighbors [Cayt 10, Cayt 12]. The RBC framework provides the
option for an exact closest point search or, if small errors are tolerable, a so-called
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(a) RBC construction. A set of representatives ri ∈ S is randomly selected from the
database points S (left). For each database point its closest representative ri is computed
(middle) and local clusters S ri ⊂ S identified by the representatives are formed (right).

(b) RBC query. For a query point x ∈ PQ (left) the local cluster S ri defined by the closest
representative ri is determined (middle). The nearest neighbor for the query point is then
computed by a local search in the cluster identified in the previous step (right).

Figure 7.3: Simplified 2-D illustration of the approximative RBC framework sim-
ilar to [Baue 13b]. The construction scheme is depicted in the top and the query
scheme in the bottom figure. Note the two-tier approach to prune the search space.

one-shot approximative search that is typically faster [Cayt 12]. The original core
concept of the one-shot RBC framework is a space partitioning data structure that
subdivides the set of database points into potentially intersecting local clusters
with equal cardinality. The individual clusters S ri ⊂ S are uniquely identified
by so-called representatives ri ∈ S that are randomly selected from the database
points S . However, this implies a sorting of database entries for each represen-
tative or the need for multiple BF runs [Cayt 10]. Both are potential performance
bottle-necks in a real-time scenario.

In preceding work, an approximate but performance optimized version of the
one-shot approach was proposed [Neum 11, Baue 13b]. This scheme trades accu-
racy against run-time by assigning each database point x ∈ S to exactly one rep-
resentative ri during RBC construction, i. e. the local clusters are disjoint. This
scheme is illustrated in Fig. 7.3a. The modified RBC NN query is basically consis-
tent with the original approach proposed by Cayton [Cayt 10, Cayt 12] and consists
of a two-stage method that for a given query point x ∈ PQ prunes the search space
by first identifying the nearest representative ri followed by a closest point search
in the representative’s corresponding cluster S ri , see Fig. 7.3b.

7.4.2 Projective Data Association

One inherent problem with corresponding point search strategies that rely on spe-
cial data structures is that these data structures must be constructed as a very first
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(a) Single-shot with a conventional pin-
hole camera model following Fig. 7.2.

(b) Projection and local search with a cam-
era model similar to manifold ray-casting.

Figure 7.4: Projective data association schemes. Simple projection for pinhole cam-
era models (left) and projection with subsequent local search for manifold ray cast-
ing (right).

step. As outlined in the related work from Section 7.2 and as will be shown later
in the experiments for the RBC this is an overhead that cannot be neglected in a
real-time scenario. Further, such strategies are often optimized for corresponding
point retrieval from a discrete set of points and obtaining the corresponding point
on a continuous surface is a non-trivial task.

By design, PDA schemes do not suffer from these problems. The basic idea
with PDA methods is to project a query point x ∈ PQ into the RI sensor do-
main Ω by using the projective geometry inherent to the camera, cf. Eq. (3.7). Let
Ωr

P(x) ⊂ Ω similar to Eq. (3.8) denote the local index neighborhood with radius r
around the query point’s projection P(x) ∈ Ω into the RI sensor domain Ω. The
nearest neighbors of x are then given by the set of surface points Sx ⊂ S that
correspond to the indices contained in Ωr

P(x) ⊂ Ω, i. e.

Sx =
{

xi|i ∈ Ωr
P(x)

}
. (7.20)

If the radius r of the index neighborhood is set to zero, i. e. only one single point
is considered, then this corresponds to the original reverse calibration scheme
[Blai 95, Rusi 01]. This approach is schematically depicted in Fig. 7.4a for a con-
ventional pinhole camera model. Selecting the radius r > 0 results in a PDA with
subsequent local search. Similar to the high coverage surface reconstruction in
Section 5.4.2, this local search can be interpreted in terms of manifold learning
techniques that aim for a mapping that preserves mutual distances in the high-
and low-dimensional representation of data points. Thus, the idea is that, on a
local scale, mutual distances in Ωr

P(x) are a strong clue for mutual distances in
Sx. This approach is depicted in Section 7.4.2 for the manifold ray casting surface
reconstruction technique from Section 5.4.2.

By design, PDA schemes can operate on continuous surface representations by
using interpolation techniques w. r. t. the sensor domain Ω.
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7.5 Experiments and Results

Contrary to the structure in the preceding sections, the experiments first investi-
gate the accuracy and run-time performance of corresponding point search strate-
gies in order to establish a baseline strategy for the application of 4-D shape priors
for respiratory motion analysis. The experiments for the latter are subdivided into
a study on real-time continuous respiratory motion monitoring and motion com-
pensated patient positioning.

7.5.1 Corresponding Point Search Strategies

The first part of the evaluation is concerned with evaluating the RBC and PDA
corresponding point search strategies outlined in Section 7.4 with regard to their
performance in a respiratory motion analysis scenario.

Experimental Setup

For the experiments, the pre-procedurally trained motion model of subject S1 and
its intra-procedural test sequences with 117 frames covering regular breathing was
chosen exemplarily. The motion model parameter was fixed to b = 0 which is a
reasonable initial estimate for the model registration problem from Eq. (7.1).

The experiments are conducted on the RI surface representations S that is
directly obtained from the manifold ray casting method from Section 5.4.2 with
Ω ∈ R640×480 as well as a surface data representation S ′ with Ω ∈ R320×240 and
S ′′ with Ω ∈ R160×120 that are computed from smoothing and resampling the
depth measurements in R ≡ S . For S ′ the smoothing Gaussian was parame-
terized with σ = 2 and for S ′′ with σ = 4. The rationale behind this exper-
iment is to investigate the performance of the different NN search strategies in
a scale-space and multi-resolution scenario which is a common approach in nu-
merical optimization for improved convergence and robustness concerning local
extrema. This results in the number of query points as |Pb| ∼ 104 and the number
of data base points as |S| = 640 · 480 ∼ 3.0× 105, |S ′| = 320 · 240 ∼ 7.7× 104 and
|S ′′| = 160 · 120 ∼ 2.0× 104.

As baseline, the brute-force primitive is chosen to yield exact closest points in
an Euclidean distances sense. The RBC and PDA frameworks are then assessed
against the BF baseline w. r. t. their inherently free parameter, i. e. the number of
representatives |{ri}| with RBC and the local neighborhood radius r as with PDA.
The experiments are concerned with assessing the competing strategies w. r. t. their
capability to yield exact closest points as well as their run-time characteristics.

Results

The very basic accuracy and run-time trends for the RBC and PDA strategies are
illustrated in Fig. 7.5 for the original surface data S . The figure shows the ratio
of correspondences that coincide with the NN results of the BF baseline method
and the NN query times. Both aspects are assessed for varying the inherent free
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(a) Random Ball Cover. (b) Projective Data Association.

Figure 7.5: Trends for RBC (left) and PDA (right) corresponding point search for
varying the free parameter, i. e. the number of representatives with RBC and the
neighborhood radius with PDA. Plotted is the ratio ψ of correspondences that are
in congruence with the BF baseline against the NN query time TQ. The dashed
and dotted curves denote a polynomial fitted to the data points. Note the sub-
stantially different axes scales of the RBC and PDA plots regarding both ratio of
correspondences and query time.

parameter of the investigates strategies, i. e. the number of representatives with
RBC and the radius of the local index neighborhood with PDA.

The trend graphs show that the number of correctly identified corresponding
points directly depends on the number of representatives and neighborhood ra-
dius, respectively. For the RBC a low number of representatives yields a high ac-
cordance to the BF results and the PDA benefits from a high neighborhood radius.
In this context, note that if the number of representatives is chosen to one then
the RBC coincides with the BF primitive. Similarly, the PDA strategy resembles
the BF method if the radius is chosen to include all available surface points. As
with the number of correctly identified closest points, the run-time of one single
NN query depends on the number of representatives and the radius of the local
index neighborhood, respectively. This is self-explaining for the PDA and for the
RBC this is due to the fact that a low number of representatives do not provide a
proper search space partitioning. However, the most important finding from the
run-time graph is the far superior performance of the PDA approach compared to
the RBC framework. Selecting an exemplary threshold of ψ = 0.9, i. e. 90% cor-
rectly identified closest points w. r. t. the BF primitive, the PDA exhibits a query
time of ∼ 0.15 ms and outperforms the RBC by a factor of approximately 46 given
an RBC query time of ∼ 6.9 ms. Yet, this does not include the RBC construction
time that adds an additional 6.6 ms overhead.

The metrics reported above are detailed in Table 7.1 for the full and down-
sampled RI surface data S , S ′ and S ′′. Additionally, the table provides the 95-th
percentile of the Euclidean distances between BF results and RBC and PDA NN
query results, respectively. This metric is used to quantify the severity of mis-
matches. This is an important issue as incorrectly identified closest points may for
example denote the second or third closest points and thus still provide a suit-
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Brute Force Random Ball Cover Projective Data Association
Number of representatives |{ri}| = PDA radius r =

25 26 27 28 29 210 211 212 7 6 5 4 3 2 1 0

S ′′
ψ 1.00 0.97 0.96 0.95 0.93 0.90 0.87 0.82 0.78 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.59
P95 [mm] 0.00 0.00 0.00 4.03 4.11 4.88 8.59 9.10 9.36 0.00 0.00 0.00 0.00 0.00 0.00 1.18 10.8
TC [ms] − 1.41 1.32 0.94 0.97 1.07 1.23 2.00 2.94 − − − − − − − −
TQ [ms] 5.21 0.47 0.21 0.12 0.12 0.10 0.15 0.25 0.46 0.19 0.11 0.08 0.07 0.05 0.04 0.04 0.03

S ′
ψ 1.00 0.98 0.98 0.98 0.97 0.95 0.94 0.92 0.89 1.00 1.00 1.00 1.00 0.98 0.93 0.83 0.43
P95 [mm] 0.00 0.00 0.00 0.00 0.00 1.28 2.02 2.08 2.65 0.00 0.00 0.00 0.00 0.00 1.68 4.62 8.58
TC [ms] − 1.97 1.95 1.97 1.97 2.32 2.80 3.81 6.23 − − − − − − − −
TQ [ms] 20.2 1.66 1.62 1.30 0.94 0.80 0.68 0.88 0.81 0.24 0.16 0.13 0.11 0.10 0.09 0.08 0.08

S

ψ 1.00 0.97 0.95 0.92 0.85 0.79 0.75 0.71 0.69 0.99 0.98 0.95 0.92 0.87 0.80 0.65 0.29
P95 [mm] 0.00 0.00 0.67 1.47 2.97 3.84 4.51 5.24 5.85 0.00 0.07 0.67 1.85 3.14 4.49 6.15 8.21
TC [ms] − 6.58 6.59 6.61 6.67 7.71 9.50 13.0 20.8 − − − − − − − −
TQ [ms] 80.6 13.1 8.57 6.93 4.05 3.05 3.72 3.66 3.08 0.28 0.21 0.19 0.16 0.13 0.12 0.10 0.10

Table 7.1: Accuracy and run-time performance of different corresponding point search strategies. The brute force primitive yields
exact closest points and constitutes the baseline for assessing the RBC and PDA search strategies. Reported accuracy metrics are
the ratio of correspondences that coincide with the BF results (ψ) and the 95-th percentile of the Euclidean distances between BF
results and the corresponding approximative results across all query points (P95). For assessing the run-time performance, the
construction times TC (RBC only) and query times TQ are reported. For the RBC the influence of the number of representatives
|{ri}| is evaluated whereas the PDA approach is evaluated w. r. t. the radius r in pixels of the local neighborhood. All metrics are
averaged over an exemplarily selected respiration sequence consisting of 117 frames.
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able corresponding point. The outlined data basically reflect the relationship be-
tween the accuracy and run-time performance as depicted in the trend graph from
Fig. 7.5. For full resolution data, the RBC must be parameterized with |{ri}| ≤ 27

representatives to yield > 90% correct matches and the PDA approach requires a
neighborhood radius of r ≥ 4. Interestingly, the rate of decrease and the range of
correctly identified correspondences is more distinct with the PDA method. For
95% of query points, the distance to the BF baseline results are in average less than
1.47 mm with RBC and 1.85 mm with PDA. This error is in the scale of the noise
level of typical RI sensors, cf. Section 4.7.

Regarding run-time performance, the experiments confirm the complexity of
O
(
|PQ| · |S|

)
for the brute force primitive and different resolution levels. For the

RBC, the results demonstrate the overhead of the acceleration structure construc-
tion that is directly related to the number of representatives. In practical applica-
tions, this usually requires a trade-off between low construction times on the one
hand and low query times on the other hand. For ICP-like algorithms where the
RBC data structure is built once and queried often, one favors low query times
and accepts the additional overhead during construction. An interesting outcome
of the experiments is the comparison of run-times between the different resolu-
tion levels for the RBC and the PDA scheme. While both construction and query
run-times can be substantially decreased for the RBC this does not hold true for
the PDA approach. This is due to the fact that the PDA method by design does
not depend on the number of data base points. Run-time differences between the
resolution levels are most likely due to cache hit issues with texture memory that
was used to represent the surface data S .

7.5.2 Continuous Respiratory Motion Monitoring

The next part of the evaluation in this chapter is concerned with the applicability of
4-D shape priors for continuous respiratory motion monitoring. The experiments
and results have been previously published in [Wasz 16] and are twofold. First, the
general principles and methodology of the proposed respiratory motion frame-
work are assessed. In particular, this includes the ability of 4-D motion models to
adapt to unseen RI body surface data, the robustness of the approximated CPD
registration scheme in the presence of noise and outliers, the run-time characteris-
tics and the performance of the model-based surrogates from Eq. (7.2) compared to
conventional RI surrogates. Additionally, the respiration surrogates obtained by
the model-based formulation are compared to a respiration signal obtained from
an impedance pneumography (IP) sensor that does not rely on body surface mo-
tion but instead directly measures the change of lung volume. For the experiments
that are concerned with respiration surrogates, the focus is on the assessment of
the proposed WVR models and their ability to automatically differentiate between
distinct breathing patterns.

Experimental Setup

For the experiments the approximated CPD model registration scheme from Sec-
tion 7.3.2 was used for registering the shape motion model to the unseen RI body
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surface. The CPD method was parameterized with w = 0.99 and a 5× 5 PDA
neighborhood Sxb

n
, i. e. each model point xb

n is connected to its 25 nearest neigh-
bors x′n,m ∈ Sxb

n
. The initial guess for the model parameter was set to b = 0.

Convergence of the iterative optimization scheme is assumed when there are no
considerable changes in the cost function which is expressed in this experiment as:∣∣∣1− ∣∣∣J CPD

b,σ /J CPD
b′,σ′

∣∣∣∣∣∣ < ε, (7.21)

where a prime denotes the estimates from the previous iteration. The convergence
parameter was heuristically determined and set to ε = 10−2.

Setup and data for methodological assessment For the methodological exper-
iment, high resolution RI data from subjects S1, . . . , S4 were captured using two
Microsoft Kinect RI sensors and reconstructed using the multi-view fusion frame-
work introduced in Chapter 5 of this thesis. The sensor specifications and fusion
parameters can be found in Section 5.5.2. The surface post-processing pipeline
including cropping and Laplacian smoothing as well as details on the body sur-
face deformations are detailed in the foundation chapter on 4-D shape priors in
Section 6.6.1. The resulting key figures of the trained 4-D motion models are sum-
marized in Table D1.

For testing, the subjects were instructed to perform one cycle of thoracic and
abdominal and two cycles of regular breathing. These sequences were then an-
alyzed at the full frame-rate of the RI sensor, i. e. 30 Hz. The detailed listing of
the number of frames for each cycle and each subject is provided in Table D1 In
contrast to the surfaces used in the training phase, neither cropping nor mesh deci-
mation nor Laplacian smoothing was applied. The rationale behind this scheme is
multi-modality, i. e. the employed algorithms must be robust w. r. t. different spa-
tial sampling, mesh topology or partial matching.

Setup and data for the IP experiment For the second experiment, three addi-
tional subjects S5–S7 were captured using two Asus Xtion PRO RI sensors with
a frame-rate of ∼ 30 Hz and a resolution of Ω = R320×240. The same multi-view
fusion, pre-processing, model generation and registration methods as for subjects
S1–S4 were used, cf. Section 6.6.2. Simultaneously, a respiration signal based on
IP was acquired using a PMM2 sensor (Siemens Healthcare, Erlangen, Germany).
The IP sensor sends high frequency current through biopotential electrodes that
are attached to the left and right side of the thorax and the side of the belly. Based
on the change of impedance caused by the change of lung volume, a 1-D respira-
tion signal was obtained at 250 Hz. To match the RI frame-rate, the IP signal was
uniformly downsampled to 30 Hz.

Similar to the first experiment with subjects S1–S4, the subjects S5–S7 were
instructed to perform free abdominal and thoracic breathing to train the WVR
model. This resulted in 6–7 training samples, see Table D2 for a detailed listing
on the number of frames and the key figures of the corresponding WVR models.

For testing, a series of different breathing instructions were to be performed
over a period of about 7 min. The breathing patterns consisted of (i) abdominal
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and thoracic breathing with a duration of about 60 s, each, (ii) breathing at fixed
frequencies of 0.5 Hz and 0.17 Hz for both shallow (60 s) and strong respiration
(30 s) and (iii) breath holds of 15 s over a total time of 120 s. Using this protocol,
a total number of more than 10 000 testing frames were collected per subject, see
Table D2 for a detailed listing.

Though being acquired simultaneously, the RI surrogates and the IP signal ex-
hibited a temporal shift caused by latencies in the employed computer and record-
ing system. To bring both signals into congruence the phase-wise shift that max-
imizes the PCC between the shifted IP signal and the model surrogate ξM

{J,A,T}
yielding the highest correlation was estimated. The rational behind this signal
alignment scheme is that the temporal shift is not uniform across the entire evalu-
ation period but at least one model surrogate is supposed to explain the IP signal
within one evaluation phase.

Evaluation concepts The ability of pre-procedurally trained 4-D motion mod-
els to adapt to unseen intra-procedural respiration states is quantified using the
model-to-surface (M2S) registration error. This error is calculated as the distance
between the points xb

n ∈ Pb of the registered motion model and intra-procedural
RI surface data S :

EM2S
n = min

{
‖xb

n − x′‖2, x′ ∈ S
}

. (7.22)

For parameters b that were estimated using the P2T distance or the CPD frame-
work, the M2S error EM2S is an unbiased metric as it does not reflect the corre-
sponding cost functions that are optimized, cf. Eqs. (7.6), (7.11) and (7.16).

To assess the robustness of the proposed framework in the presence of noise
and outliers, the RI data was corrupted according to R∆(i) = R(i) + ∆ri prior to
computing the corresponding surface representation S∆(i). The pixel-wise offsets
∆ri were drawn from a standard normal distribution to simulate noise. For 25% of
the offsets which correspond to |∆ri| > 1.15 mm according to the standard normal
distribution, an arbitrarily selected multiplication by a factor of 5 was applied to
simulate outliers. This is a simplified noise model compared to the pre-processing
experiments in Section 4.7.1 that incorporated systematic errors and localized de-
fect regions. However, as shown in the corresponding evaluation, pre-processing
techniques are effective means to remove these artifacts and only temporal noise
and a limited number of outliers remain. The robustness of an alignment strategy
is then quantified by the point-wise model-to-model (M2M) difference as:

EM2M
n = ‖xb

n − xb∆

n ‖2, (7.23)

where xb
n ∈ Pb are the model points registered to the original RI surface data S

and xb∆

n ∈ Pb∆
denote the model points Pb∆

aligned to the corrupted data S∆.
For comparing the model-based surrogates to conventional surface monitor-

ing techniques, two baseline surrogates that encode abdominal (ξRI
A ) and thoracic

(ξRI
T ) surface motion, respectively, are used. Here, two circular regions Ωj ∈ Ω

with j ∈ {A,T} and a diameter of approximately 50 mm were manually selected
for each of the subjects. The regions were placed at positions where the maximum
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respiration magnitude w. r. t. thoracic and abdominal motion is expected. Simi-
lar to [Faya 11, Xia 12], the respiration surrogates ξRI

j are calculated as the mean
distance of 3-D points to the camera center according to:

ξRI
j = |Ωj|−1 ∑

i∈Ωj

‖S(i)‖2. (7.24)

Results

Results for the adaptability and robustness tests as well as the comparison with
base-line RI surrogates are conducted for subjects S1–S4. The comparison of the
model-based surrogates and the IP signal is performed using subjects S5–S7.

Adaptability and robustness The M2S error metric from Eq. (7.22) that quanti-
fies the ability of 4-D shape priors to adapt to unseen RI body surface data of the
corresponding subject are depicted in Fig. 7.6a. Here, the first (Q1), second (Q2)
and third (Q3) quartiles of EM2S

n across all model points xb
n were calculated. The

quartiles were finally averaged across all breathing sequences for the purpose of a
compact representation. For all subjects and respiration sequences the average me-
dian (Q2) distance is always below 1.0 mm and across all subjects and respiration
sequences a mean Q2 distance of 0.5 mm was obtained. Note that an exact surface
reconstruction is not to be expected as the dimensionality reduction step in the
model generation phase is parameterized in a way to account for shape variations
caused by respiratory motion and not by noise. Further, Laplacian smoothing ap-
plied to the training samples acts as an additional low-pass component that filters
out small structures and surface variations. The reconstruction errors of approxi-
mately 1.0 mm are in the scale of the noise level of the employed RI sensor for an
acquisition distance of ∼ 1 m, cf. Section 4.7.

The M2M metric EM2M from Eq. (7.23) to assess the robustness of the proposed
registration methods in the presence of noise and outliers is depicted in Fig. 7.6b
for the conventional P2T least-squares estimator from Eq. (7.6) and the proposed
robust CPD approximation from Eq. (7.16). Again, the quartile differences EM2M

n
across the entire surface were averaged over the individual breathing sequences.
The differences w. r. t. the ground-truth estimation using non-corrupted data are
substantially smaller with the robust CPD alignment strategy compared to the con-
ventional least-squares estimator and, except for subject S4 with thoracic breathing
as a prominent error increase, the median difference never exceeds 0.2 mm. As an
overall measure across all subjects and sequences, the robust CPD estimator yields
an average Q2 M2M error of 0.06 mm and outperforms the conventional approach
that has a mean Q2 M2M distance of 0.36 mm by a factor of approximately 6.
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(a) Model-to-surface distance EM2S.

(b) Model-to-model difference EM2M in the presence of outliers with robust (colored) and conventional least-squares (gray) estimators.

Figure 7.6: Model-to-surface distance and model-to-model differences for the P2T metric. Shown are the first to third quartiles
Q1–Q3 averaged across all frames for abdominal, thoracic and regular breathing patterns and subjects S1 (left) to S4 (right).
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Table 7.2: Performance evaluation of the proposed framework for model-based
continuous motion monitoring. Reported are the average number of iterations
and the resulting computation times for conventional P2P and the proposed P2T
approximated CPD alignment schemes (cf. Eqs. (7.11) and (7.16)). The metrics are
averaged over all testing frames.

CPD P2T CPD P2P

Iterations Run-time [ms] Iterations Run-time [ms]

S1 15.8± 5.5 18.5± 5.5 29.1± 3.6 28.9± 3.5
S2 9.67± 1.4 12.2± 1.8 34.0± 5.3 33.9± 4.9
S3 12.1± 3.1 15.6± 3.6 32.2± 8.1 33.0± 7.6
S4 14.6± 6.1 16.2± 5.8 37.8± 6.2 37.2± 5.8

Run-time evaluation The number of required iterations and the resulting run-
times for the approximated CPD registration schemes using conventional P2P ver-
sus P2T alignment are given in Table 7.2. In average, the P2T scheme requires 13
iterations which corresponds to ∼ 16 ms. For comparison, the conventional P2P
metric requires about 33 iterations with an average run-time of ∼ 33 ms. Though
being computationally more expensive for one single iteration, the P2T scheme has
a superior convergence rate compared to P2P alignment. Ultimately, this results
in a substantially lower run-time for the P2T method, outperforming the conven-
tional P2P scheme by a factor of 2.0 in average. However, regardless of the dis-
tance metric, the multi-link formulations from Eqs. (7.15) and (7.19) can be com-
puted very efficiently on GPU architectures as the underlying summation of matri-
ces can be calculated based on tree-based reduction schemes [Harr 07]. Including
the run-times for multi-view RI data fusion of approximately 5 ms as listed in Ta-
ble 5.2, continuous respiratory motion monitoring using 4-D shape priors with the
approximated CPD P2T registration scheme achieves run-times of about 20 ms or
50 Hz on the off-the-shelf hardware used in this thesis, see Appendix B.

Model-based vs. conventional RI-based respiration surrogates Table 7.3 lists
the PCCs between the baseline surrogate ξRI

j from Eq. (7.24) and the model-based
surrogates ξM

j from Eq. (7.2) for the conventional PCA-based model and the pro-
posed WVR model. For the WVR model a PCC of 0.91 with subject S2 and S3
for abdominal breathing is obtained at the minimum. In contrast, the surrogates
obtained by the conventional PCA model partially fail to differentiate between
distinct respiration patterns with PCCs as low as 0.10 as with S3 and abdominal
breathing. This can be traced back to the global nature of the conventional PCA
modes, see Fig. 6.6 for an illustration of the deformation modes. The global defor-
mations induced by a certain mode often must be corrected by a complementary
mode such that the resulting model instance matches the RI surface data. This re-
sults in a score on the model parameter bj defining the surrogate ξM

j though there
is no anatomical equivalent. In contrast, the WVR model does not suffer from this
problem due to the inherent sparsity constraints and ability to describe local sur-
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Table 7.3: PCCs ρ{A,T} between conventional RI-based surrogates ξRI
{A,T} and model-

based surrogates ξM
{A,T} for the abdominal (A) and thoracic (T) mode. Reported

are the values for subjects S1-S4 and sequences of abdominal, thoracic and regu-
lar breathing patterns. The evaluation further opposes the standard PCA vs. the
proposed WVR approach. All reported PCCs are statistical significant (p ≤ 0.01).

Thoracic Abdominal Regular
ρT ρA ρT ρA ρT ρA

S1
PCA 1.00 0.99 1.00 1.00 0.97 0.99
WVR 1.00 1.00 1.00 1.00 0.98 1.00

S2
PCA 1.00 0.31 0.86 1.00 0.96 0.97
WVR 1.00 0.97 0.91 1.00 0.99 0.99

S3
PCA 0.98 0.13 0.10 0.98 0.96 0.79
WVR 0.98 0.95 0.91 1.00 0.97 0.98

S4
PCA 0.98 1.00 1.00 0.98 0.99 0.94
WVR 0.98 1.00 1.00 0.99 0.99 0.99

face deformations. Across all breathing sequences, subjects and surrogates a PCC
of 0.91 for the PCA model and 0.98 for the WVR model was obtained.

Comparison to IP respiration signals Fig. 7.7 exemplarily depicts the shift cor-
rected IP signal and the proposed model-based RI surrogates for subject S5 over
the entire evaluation period of approximately 7 min. Noticeable are the distinct
breathing instructions and varying degrees of correlation between the IP signal
and the different model-based surrogates. This is most prominent for phase P2
where the abdominal model surrogate ξM

A contradicts the IP sensor regarding both
signal scale and shape whereas the thoracic surrogate ξM

T follows the IP signal.
Overall, the thoracic and joint model surrogates ξM

T,J best resemble the IP signal
which can best be seen for the distinct spikes in the breath hold phase P7.

For quantification, the PCCs between the shifted IP signal ξIP and the model-
based respiration surrogates ξM

J,T,A were computed for the individual sequences
Pt. The results are listed in Table 7.4. For the joint signal ξM

J , an average PCC of
0.96± 0.04 with ρJ ≥ 0.97 for 19 out of 21 evaluations and a minimum of 0.92 was
found across the individual phases and all subjects. In contrast, the thoracic and
abdominal surrogates show substantial variations regarding the correlation with
the IP signal with an average PCC of 0.79± 0.35 and 0.84± 0.28 for the abdominal
and thoracic surrogate, respectively. Here, the most prominent results are for sub-
ject S6 and phase P1 where there is no correlation in the thoracic mode (ρT = −0.04)
but a strong correlation in the abdominal part (ρA = 0.97).

As an overall performance metric, the PCCs across the entirety of available
breathing samples were computed. This avoids any bias that might occur in the
phase-wise correlation due to the signal shift or the mean and variance normal-
ization inherent to the PCC. Here, PCCs of 0.93 to 0.96 for the joint, 0.93 to 0.99
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Figure 7.7: Qualitative visualization of the IP signal ξIP compared to the joint (ξM
J ), thoracic (ξM

T ) and abdominal (ξM
A ) WVR

model surrogates for subject S5 and different respiration patterns. The signals divide into abdominal (P1), thoracic (P2), fast
shallow (P3), fast strong (P4), slow shallow (P5), slow strong (P6) and breath hold (P7) breathing instructions. For visualization,
the IP signal is scaled to [min(ξIP), max(ξIP)] and the model surrogates to [min(ξM

J , ξM
T , ξM

A ), max(ξM
J , ξM

T , ξM
A )].
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All phases P1 P2 P3 P4 P5 P6 P7

ρJ ρT ρA ρJ ρT ρA ρJ ρT ρA ρJ ρT ρA ρJ ρT ρA ρJ ρT ρA ρJ ρT ρA ρJ ρT ρA

S5 0.96 0.97 0.73 0.98 0.85 0.98 0.94 0.96 0.63 0.98 0.98 0.92 0.97 0.99 0.80 0.99 0.98 0.94 0.99 0.99 0.96 0.99 0.98 0.98

S6 0.93 0.93 0.90 0.97 −0.04 0.97 0.98 0.96 0.97 0.98 0.55 0.96 0.99 0.93 0.97 0.99 0.93 0.98 1.00 0.99 0.99 0.98 0.88 0.96

S7 0.96 0.99 0.16 0.92 0.99 0.86 0.97 0.99 −0.47 0.97 0.97 0.84 0.98 0.98 0.09 0.98 0.97 0.96 0.99 1.00 0.63 0.98 0.98 0.74

Table 7.4: PCCs (ρi) between the shifted IP sensor signal and WVR model-based joint (ρJ), thoracic (ρT) and abdominal (ρT)
surrogates. Correlation coefficients are reported for phases of different breathing patterns as well as the entire evaluation period.
The individual phases consist of abdominal (P1), thoracic (P2), fast shallow (P3), fast strong (P4), slow shallow (P5), slow strong
(P6) and breath hold (P7) breathing instructions, cf. Fig. 7.7 for an exemplary illustration. The surrogate yielding the best PCCs
to estimate the signal shift is highlighted. All relevant PCCs with |ρi| > 0.1 are statistically significant (p ≤ 0.01).
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for the thoracic, and 0.16 to 0.90 for the abdominal surrogates were found. Com-
pared to the phase-wise evaluation, the performance of the joint signal slightly
decreased whereas the thoracic surrogate shows a higher correlation w. r. t. the IP
signal. This effect is solely due to the mathematical foundations of the PCC and
can exemplarily be described for subject S5. As depicted in Fig. 7.7 for the abdom-
inal P1 test sequence, there is a high correlation with the joint surrogate whereas
the thoracic surrogate exhibits a slight downward shift resulting in a lower correla-
tion. This observation is also quantified in Table 7.4. However, when considering
this particular sequence in the context of the entirety of available samples, the tho-
racic surrogate better reflects the IP signal compared to the joint surrogate that, for
example, does not feature the sharp increase in the surrogate response between
sequences P1 and P2.

7.5.3 Motion Compensated Patient Alignment

The concluding part of the evaluation addresses the problem of motion compen-
sated patient positioning using 4-D shape priors. The evaluation is particularly
concerned with (i) the benefits of using a motion compensated alignment scheme
compared to conventional positioning, (ii) the effect of varying the body surface
coverage as motivated in Section 6.3.2, and (iii) the degree of initial misalignment.
Throughout the experiments, an additional focus is on the performance of the P2P
and P2T metrics that drive the model to RI surface registration.

Experimental Setup

The experimental setup and the data follow the respiratory motion analysis ex-
periment for subjects S1–S4 in Section 7.5.2, see also Table D1 for a detailed listing
of the key parameters. As the subjects were instructed not to move between the
training and the testing phase, the ground-truth transformation for the evaluation
can be derived from the identity transform. This scheme further allows to use the
surrogates, metrics and general findings from the preceding experiment to assess
the alignment accuracy and precision. For the conventional positioning, the mean
body surface, i. e. b = 0 was chosen as static reference.

Evaluation concepts For evaluation, the trained motion models were initially
misaligned by a set of transformations TMA ≡ (RMA, tMA) with rotation RMA ∈
SO3 and translation tMA ∈ R3. The parameterizations of these transformations
are motivated by initial misalignments and residual positioning errors with au-
tomatic RI based coarse alignment strategies as for example proposed by Bauer
et al. [Baue 11] or Placht et al. [Plac 12]. The detailed transformation specifications
are listed in Table 7.5.

Conventionally, the accuracy and precision of a patient alignment system is as-
sessed by the difference between the estimated and the ground truth transform
w. r. t. the translational and rotational components [Baue 11, Plac 12, Wasz 12b].
Though this is an intuitive practical assessment regarding the treatment table trans-
formation input parameters, this evaluation scheme does not account for the actual
alignment error in its entirety. This is due to the fact that, in general, rotations and
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tMA
i [mm] RMA

i [°] Initial ETRE [mm]

tx ty tz rx ry rz S1 S2 S3 S4

TMA
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TMA
1 2.0 −1.0 3.0 1.0 −1.0 2.0 30.0 29.4 30.9 28.3

TMA
2 7.0 −5.0 8.0 3.0 −2.0 2.0 64.0 62.7 67.5 60.3

TMA
3 27.0 −37.0 15.0 10.0 −9.0 7.0 223.6 218.8 234.8 210.1

TMA
4 57.0 −35.0 33.0 −17.0 20.0 15.0 432.8 413.8 466.3 407.4

Table 7.5: Parameterization of the transformations TMA
i ≡ (RMA, tMA) defining

the initial misalignment for motion compensated patient positioning. Translations
and rotations are defined along and around the x, y and z axis, respectively. The
table further lists the corresponding initial TRE ETRE for subjects S1-S4.

Figure 7.8: Alignment assessment based on rotation and translation components
only. Two rectangles are rotated around different pivots (red dots) and vertically
shifted. The left figure corresponds to a patient-based whereas the right figure is a
LINAC-based frame of reference. Though the rotation angle and the shift are the
same, fundamentally different alignment matches are obtained.

translations exhibit non-comparable physical units. An exception are small rota-
tions that can be approximated by translations as pursued in the linearization of
the P2T alignment metric in Section 7.3.1. Further, rotation and translation errors
depend on the frame of reference for evaluation, i. e. patient-based or LINAC-based,
and may further cancel each other out to a certain degree. A sketch of this problem
is depicted in Fig. 7.8.

In this thesis, the estimated alignment is instead assessed by the target regis-
tration error (TRE). For a known ground truth transformation TGT ≡ (RGT, tGT),
the estimated transformation T̂ ≡ (R̂, t̂) from Eq. (7.1) and the n-th model point
xb′

n ∈ Pb′ , the TRE is calculated according to:

ETRE
n =

∥∥∥(RGTxb′
n + tGT

)
−
(

R̂xb′
n + t̂

)∥∥∥
2

. (7.25)

Here,Pb′ denotes the model with the largest surface extent analogous to the model-
based surrogates from Eq. (7.2). The model with the largest extent is favored over
the estimated model with parameter b̂ as the ground truth model parameter is un-
known and b′ provides an upper bound for the surface extent and thus the TRE.
This evaluation scheme further implicitly accounts for the internal registration ac-
curacy as all landmarks inside the body must necessarily be contained within the
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surrounding body surface. The final error metric for this experiment is calculated
as the maximum of all TREs:

ETRE = max
{
ETRE

n | n = 1 . . . |Pb′ |
}

. (7.26)

This maximum scheme is preferred over the mean TRE across all model points in
order to establish an upper bound for the registration error.

Results

Fig. 7.9 depicts the results for conventional and motion compensated patient align-
ment as well as the effect of varying degrees of body surface coverage and initial
misalignments. The individual aspects of the experiments and key findings de-
picted in this figure are detailed in the following dedicated paragraphs.

General aspects of conventional vs. motion compensated alignment Results for
conventional alignment using the P2P metric as a baseline for the evaluation are
shown in Fig. 7.9a. Besides a high target registration error that frequently exceeds
10.0 mm the plots show that for large initial misalignment configurations TMA

{3,4} the
registration often fails. This is a general problem of ICP-like registration schemes
that motivates the employment of coarse pre-alignment techniques, see the related
work in Section 7.2.

The results for motion compensated positioning are reported in Fig. 7.9b for the
P2P metric and in Fig. 7.9c for the P2T metric. For all investigated scenarios, the
motion compensated positioning approaches outperform the conventional base-
line alignment scheme. As an overall performance indicator using the largest body
surface coverage R1 and the medium initial misalignment TMA

2 , an average ETRE

of about 19.5 mm for conventional and approximately 4.7 mm for motion compen-
sated alignment using the P2P distance metric was obtained across all evaluation
frames and subjects. For the P2T metric, a TRE of 11.0 mm for conventional and
3.6 mm for motion-compensated alignment was obtained. In addition to this aver-
age error reduction by a factor of more than 3 the plots also depict a substantially
smaller error spread for the motion compensated alignment approaches. A gen-
eral finding from these experiments is that the registration schemes using the P2T
metric outperform the P2P-based variants regarding both the stability w. r. t. initial
misalignments and the final TRE.
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(a) Conventional positioning using the P2P metric.

(b) Motion compensated positioning using the P2P metric.

(c) Motion compensated positioning using the P2T metric.

Figure 7.9: Conventional and motion compensated positioning for subjects S1-S4 (left to right). Shown is the TRE ETRE for
different initial misalignments TMA

i , cf. Table 7.5 and varying degrees of body surface coverage R2 ⊂ R3 ⊂ R4 ⊂ R5, cf. Fig. 6.5.
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Thoracic Abdominal Regular

ETRE ρEM2S ρξM
J

ρKRE ETRE ρEM2S ρξM
J

ρKRE ETRE ρEM2S ρξM
J

ρKRE

S1 6.33 0.90 −0.89 −0.74 3.18 0.63 0.45 0.45 4.74 0.77 0.45 0.48
S2 2.36 0.45 −0.15 0.12 1.09 0.67 −0.49 −0.51 1.99 0.43 0.18 0.11
S3 2.18 0.51 0.04 −0.19 2.07 0.84 −0.71 −0.89 3.12 0.09 −0.33 0.27
S4 7.22 −0.50 −0.50 −0.51 3.34 0.38 −0.19 −0.54 4.35 0.32 −0.56 0.11

Table 7.6: Sequence-wise mean target registration errors ETRE in [mm] and correla-
tion coefficients of the TREs to selected metrics for the largest body surface region
R5 and the identity initial misalignment TMA

0 .

Body coverage and initial misalignment An important finding from the results
in Fig. 7.9 is that both the P2P and P2T based motion compensated alignment tech-
niques are in general more robust w. r. t. large initial misalignments. Additionally,
the degree of body surface coverage now constitutes an important factor with the
most prominent result being subject S3 and the P2T metric where only the large
misalignment configuration TMA

4 could not be recovered for small body coverage
R{3,2}. For small to medium initial misalignments TMA

0 –TMA
2 the TREs for mo-

tion compensated positioning are mostly governed by the degree of body surface
coverage and not the initial alignment error. In fact, for any degree of body sur-
face coverage and across all subjects, the mutual correlation coefficients between
the frame-wise TREs for these misalignments is always ≥ 0.89 for the P2T metric
and ≥ 0.71 for the P2P metric. These high correlation coefficients with the P2T
metric indicate that the registration procedure always converges to the global op-
timum that, however, does not necessarily coincide with the reference alignment
position. This can best be seen for the identity transformation TMA

0 where the reg-
istration is performed from the reference position and converges to a systematic
offset. For the individual subjects this effect varies and due to the different error
spread that captures samples covering the entire breathing spectrum, the error is at
least partially caused by the respiration state. A detailed analysis of this problem
is provided by Table 7.6 that lists the sequence-wise P2T-based mean TREs and
the correlation coefficients of the TREs to a set of selected metrics that were calcu-
lated in the preceding experiment concerned with continuous respiratory motion
analysis, i. e. these metrics are not biased regarding the transformation estimation
but are solely based on respiration. As can be seen, there is no metric that consis-
tently correlates with the TRE. Whereas for subject S1 and the thoracic sequence
the TREs highly correlate with the M2S distance EM2S, i. e. the model is not fully
capable to describe the unseen respiration states, there is no correlation for sub-
ject S4 and the thoracic sequence that exhibits a comparable TRE level. Similarly,
the TRE does not consistently correlate with the respiration magnitude expressed
as the joint signal ξM

J or the condition KRE of the body surface displacement field
computed from the estimated model parameter b̂.

For larger displacements TMA
3 and TMA

4 , the registration procedure frequently
converges to an invalid position which results in both an increased median error as
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well as an increased error spread. In particular, the P2P alignment schemes suffer
from this problem whereas the P2T scheme is consistently more robust w. r. t. such
large initial displacements.

Regarding the body surface coverage, Fig. 7.9 shows that a higher coverage in
general yields more accurate results. In particular, this holds true for the motion
compensated approaches. However, this effect is not equally distinct for all sub-
jects. The most extreme effect of a low body coverage can be observed for subject
S3 where the largest initial misalignment transformation TMA

4 could not be recov-
ered for the robust P2T alignment scheme. For conventional rigid alignment the
body coverage does not constitute the most dominant error source as the effect of
non-matching shapes influences the target registration error.

7.6 Discussion and Conclusion

This chapter was concerned with the practical application of 4-D shape priors for
respiratory motion analysis. In particular, a unifying point-set registration frame-
work that enables the clinical applications of continuous respiration monitoring
and motion compensated patient positioning was proposed.

As a fundamental component of the investigated registration methods, the RBC
framework and PDA schemes for efficient corresponding point search were as-
sessed. Though the RBC yields acceptable run-times in the motion analysis sce-
nario investigated in this thesis, it is outperformed by the PDA scheme that ex-
ploits the projective geometry inherent to body surfaces that were reconstructed
using the manifold ray-casting technique proposed in Chapter 5 of this thesis. This
underlines the benefits of domain specific knowledge and data structures that are
designed for both algorithmic as well as hardware acceleration. From these ex-
periments the RBC must be considered as a generic database query framework for
arbitrary dimensions and metrics rather than the optimal acceleration structure
for high-performance corresponding point search for RI based point-set or sur-
face registration problems. However, future research must be concerned with the
performance of the RBC framework and PDA schemes when incorporating sup-
plementary information such as photometric data or salient landmarks into 4-D
shape motion models. Further, the RBC framework is a promising candidate for
the registration of surfaces with arbitrary topology and that are not governed by
projective properties.

For continuous respiratory motion monitoring, 4-D shape priors built upon the
WVR principle in conjunction with the approximated CPD scheme using the P2T
metric are very promising. The main features here are the fully automatic and
non-invasive nature, high temporal resolution of 50 Hz that easily satisfies clin-
ical run-time requirements of few hundred milliseconds, surface reconstruction
errors in the scale of the RI sensor’s noise level and the congruence with existing
respiration surrogates or signals. For the latter, the experiments demonstrate a
high correlation of ≥ 0.97 w. r. t. conventional RI-based external surrogates. The
conclusion from this result is twofold. On the one hand, 4-D shape priors may
supersede conventional methods that require manual interaction or that rely on
heuristics. On the other hand, the investigated conventional methods are simple



7.6 Discussion and Conclusion 133

yet able to generate respiration surrogates that are as informative as the complex
model-based formulation. This is a direct result of the non-rigid surface regis-
tration methods that govern the shape motion models and that are designed to
use geometric information exclusively. When using complementary information
such as photometric data or anatomical landmarks to guide the registration pro-
cess it is expected that there is a divergence between the surrogates obtained by
4-D shape priors and the conventional formulations. Regarding respiration sig-
nals that are not based on surface deformations, the experiments show that the
proposed model-based surrogates show a high correlation with a signal obtained
from an IP sensor. The results show that an RI-based respiratory motion analysis
regarding change of lung volume requires surrogates based on distinct spatially
localized surface displacements as well as their superposition. This is enabled by
the proposed WVR model. However, which surrogate best correlates to the IP
signal depends on the breathing pattern and the subject. This is no flaw in the
model-based respiration analysis framework but instead indicates that the 1-D IP
signal as a measure of lung volume change is not capable to describe the entire
spectrum of surface deformations that is inherent to the model-based formulation.
Ultimately, this leads to the fundamental question on the actual usage of the ob-
tained respiration surrogates or signals. In radiation therapy, for simple beam gat-
ing, a 1-D surrogate that describes the lung volume may be sufficient whereas for
more advance beam adjustment methods complex external deformations for pre-
dicting internal motion may be required. For both scenarios, continuous respira-
tory motion analysis based on 4-D shape priors is a promising direction. However,
the fitness for clinical purposes must be evaluated in future research.

For patient positioning the results show that incorporating prior knowledge
on respiration-induced body surface deformations into the registration process al-
lows to substantially decrease the alignment error. Here, the experiments demon-
strated an error reduction by a factor of about 3 compared to conventional align-
ment techniques that neglect respiratory motion. Though outperforming conven-
tional systems, it must be investigated if a maximum TRE of about 4 mm obtained
with motion compensated alignment is sufficient for clinical demands. This TRE,
that is to some extent due to a systematic offset in the registration process, could
not be traced back to a single cause in this thesis. Potential candidates including
a shape model that is not fully able to adapt to unseen respiration states or ill-
conditioned body surface deformations only partially account for this issue and
are not consistent for all subjects and evaluation sequences. Future research must
thus be concerned with a detailed error analysis including the investigation of
partial surface matching issues, missing salient geometric features on the body
surface, as well as noise and the general acquisition characteristics and suitability
of the used RI sensors. In this regard, patient alignment using RI technology, both
conventional and motion compensated, should be considered as a non-intrusive
initial step for subsequent verification procedures that may involve ionizing radi-
ation. In such a multi-step alignment, the radiation exposure of the patients may
be reduced substantially.
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Outlook

This chapter is concerned with future directions regarding both hardware and
methodological aspects as well as challenges toward clinical translation.

Real-time Range Imaging

RI Devices In this thesis all experiments were conducted using an off-the-shelf
Microsoft Kinect RI sensor that was originally developed for entertainment pur-
poses and thus is not suitable for clinical applications. In fact, one crucial issue to-
ward clinical translation of RI-based respiratory motion analysis is the availability
of certified RI devices that feature real-time frame-rates, sub-millimeter accuracy
and a high failure safety. Further, potential issues due to temperature drifts and
systematic offsets as for example observed for ToF devices [Baue 13a], sub-surface
scattering for various skin types and robustness w. r. t. ionizing radiation must be
investigated. For a multi-camera setup as used in this thesis, a crucial issue is the
availability of easy-to-use calibration systems.

Pre-processing and Multi-view Range Data Fusion One question that must be
investigated in future research is whether a dedicated RI pre-processing pipeline
is necessary at all. This is to be expected for simple respiration surrogates that ana-
lyze plain depth measurements or the most basic ICP surface registration methods
as summarized in Section 7.2. However, the robust CPD-based point registration
scheme investigated in Section 7.3 is explicitly designed to account for noise and
outliers. Thus, pre-processing methods may be dispensable and run-times can
be decreased substantially. An interesting question regarding both run-time and
accuracy is whether a dedicated pre-processing pipeline followed by some basic
analysis method, or one single advanced analysis technique that inherently ac-
counts for noise and outliers is more efficient.

In a similar fashion, it must be investigated if a dedicated explicit surface re-
construction from the fused volumetric distance transform must be performed at
all. For example, Placht et al. [Plac 12] and similarly Bauer et al. [Baue 12a] used
a distance transform to accelerate the closest point search for rigid and non-rigid
surface registration, respectively. However, this scheme cannot be transferred di-
rectly to the distance transforms as used in this thesis as they are only approximative
and data is only available inside a small support region around the surface. Future
research should therefore investigate the effect of increasing the support region or
different fusion strategies that are of less approximative nature. Further, it must be
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investigated if robust multi-link registration methods are possible with implicitly
given surface data or if a different class of registration methods must be used.

Respiratory Motion Analysis using 4-D Shape Priors

The general question and main future research direction regarding the principle of
4-D shape priors for respiratory motion analysis is how they fit into clinical routine
and how they can be integrated into established workflows. This applies for both
the pre-procedural training phase as well as the intra-procedural analysis stage. In
particular, the targeted level of accuracy and robustness must be investigated. In
addition to these general issues, the following paragraphs outline future research
directions and challenges that are particularly concerned with the methodology
inherent to the proposed framework of 4-D shape priors and its applications.

Anatomical Plausible Deformation Fields One fundamental question for 4-D
shape priors is how to compute the body surface deformations that govern the pa-
tient specific motion models. The non-rigid registration methods employed in this
thesis, and similar with the majority of related publications, establish the surface
match by optimizing an objective function that is rather abstract and simplifying
from an anatomical point of view. Indeed, for the techniques investigated in this
thesis, different displacement fields were obtained for the same torso deformation.
Future research must be explicitly concerned with the question if anatomically
correct deformation fields are required and how such constraints can be enforced.
A promising approach would be to incorporate additional information based on
photometric data as proposed by Bauer et al. [Baue 12c] or salient geometric land-
marks. For example, the mamillas as captured by conventional color cameras may
constitute a strong clue for a correct match in the thoracic region whereas a surface
feature descriptor that encodes the topography of the navel region may serve as
an anchor point for the abdominal body part. Such landmarks could be used as
hard constraints in a non-rigid registration formulation as for example proposed
by Daum [Daum 11].

In addition to the problem regarding the anatomical correctness of surface de-
formations, future research must also be concerned with the question whether
surface deformations that are solely due to respiratory motion are sufficient or
if additional deformation components caused by different patient postures must
be incorporated in the motion models.

Model Generation Using Dimensionality Reduction A different aspect con-
cerns the dimensionality reduction step and the derivation of the variation modes
encoded by the proposed surface motion models. For sparse modes that are re-
quired for an analysis of distinct breathing patterns, one interesting approach
would be to compute the factor rotations not by using the PCA modes derived
from the displacement fields but instead by using PCA modes computed from
auxiliary data. Such data may for example encode the local respiration magni-
tude or manually labeled information to enforce sparsity w. r. t. user defined re-
gions of interest. This may also be interpreted as a semi-supervised extension to
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the conventional factor rotation principle. However, dedicated formulations and
optimization schemes to generate a sparse respiratory motion model may also
be investigated. Here, a natural candidate is the sparse PCA proposed by Zou
et al. [Zou 06].

In this regard, future research may also investigate non-linear dimensionality
reduction techniques to generate 4-D shape priors. Such methods only assumed a
minor role in this thesis as they typically require a large number of training sam-
ples which is not given if they are extracted from tomographic planning data. Such
a limited number of training samples is a hard constraint for applications where
the respiration state has to be analyzed instantaneously in a single-shot fashion
as for example pursued with motion compensated patient positioning proposed
in this thesis. However, as a promising research direction for continuous mo-
tion monitoring, incremental learning techniques to extend the model on-the-fly
should be investigated. Additionally, non-linear methods hold great potential if
the surface displacement fields that form the training data contain deformations
both due to respiratory motion as well as different patient postures.

Motion Compensated Positioning and Continuous Respiration Analysis The
key component for the utilization of 4-D shape priors is the registration of the
pre-procedurally trained motion models to intra-procedurally acquired RI data. As
with the problem of anatomical plausible deformation fields in the training phase,
future research must be concerned with the extension of the model registration
scheme with complementary information such as photometric data or salient ge-
ometric landmarks. In particular, the corresponding point search might benefit
from such an extension and the integration of landmark or feature matching terms
holds great potential for an improved convergence rate, increased attraction range
of the optimizer and more robust results in the absence of distinct geometric infor-
mation as for example demonstrated in [Haas 13a]. However, care must be taken
to not sacrifice the run-time performance which is particularly important for com-
plex geometric features.

Besides complementary information, an interesting future research direction
is the integration of problem-specific prior knowledge in the optimization process.
An example for this principle is continuous motion monitoring where the initial
guess for the model parameter was always set to the zero vector, i. e. the mean
shape. However, given the high frame-rates of contemporary RI sensors and the
low run-times of the proposed framework, a smooth transition between successive
respiration states can be safely assumed and the result from the previous analysis
could serve as a more suitable initial guess. Further, formulating the problem of
continuous motion analysis as a Markov chain would account for a series of pre-
ceding respiration states with the potential of increased robustness and smooth-
ness of the obtained respiration surrogates. In a similar fashion, samples from
continuous respiration states could be used to replace the single-shot motion com-
pensated positioning problem as proposed in this thesis. The rational here is that
for a reclined patient the sought treatment table transform must be the same for
all samples despite the respiration state. This could be implemented using ma-
jority voting, a weighted average or formulated in a probabilistic framework. Be-
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sides such temporal prior knowledge the cost function for motion compensated
positioning could give high priority to stationary model points. For example, this
could be achieved by assigning each model point a weight that is inversely pro-
portional to the corresponding deformation magnitude.

GPU Computing

As a general remark, GPU technology is evolving very quickly and several new
possibilities have been recently enabled by new hardware architectures. In partic-
ular, the ever-increasing number of available streaming multiprocessors and com-
pute cores allow for more parallel processing. This is promising for the algorithms
and methods investigated in this work as they inherently feature a high degree
of data parallelism which in turn allows for faster computation on future hard-
ware generations. Further, the availability of vector-style half-precision floating
point operations implemented by the latest GPU architectures is a very promis-
ing technique for iterative methods such as the investigated surface registration
approaches. Here, the first iterations might be computed very efficiently in low-
precision accuracy to provide an initial estimate for subsequent iterations that are
performed in computationally more demanding single- or double-precision.
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Summary

The analysis and management of respiratory motion is a crucial factor for a plu-
rality of medical applications. This thesis investigated RI-based methods for real-
time respiratory motion analysis. The scientific contributions of this thesis and an
overview of the proposed methods were introduced in Chapter 1. In particular,
this thesis investigated efficient methods for RI data pre-processing and multi-
view sensor fusion as well as machine learning techniques and dedicated surface
registration schemes for model-based real-time respiratory motion analysis. A par-
ticular focus of this thesis was on GPU architectures to accelerate computation
steps and ultimately enable real-time capability.

Introduction and Background Part I of this thesis was concerned with the gen-
eral motivation of this thesis. In particular, the medical background for respiratory
motion in therapeutic and diagnostic applications, as well as a literature survey of
existing respiration management systems that already found their way in clinical
routine, were given in Chapter 2. This chapter also introduced the paradigm of
using RI technologies for respiratory motion analysis and provided a background
on the working principles of contemporary RI sensors that are used both in daily
routine and for the experiments in this thesis. Based upon the general require-
ments of using RI systems for respiratory motion analysis, this chapter covered
the paradigm of using GPU architectures to accelerate computing steps. In partic-
ular, it was shown that the high degree of data level parallelism that is inherent to
many computation steps in RI-based respiratory motion analysis perfectly fits the
GPU programming models and hardware features.

Real-time Range Imaging The focus of Part II of this work was on efficient con-
cepts for real-time RI processing as the prerequisites for respiratory motion man-
agement. The acquisition geometry in RI, the basic mathematical notation and
nomenclature as well as the software framework that was used throughout this
thesis were introduced in Chapter 3.

Chapter 4 was concerned with pre-processing techniques to address the low
SNR of range data and typical artifacts that are often observed with RI sensors
such as ToF cameras or the Microsoft Kinect device. In particular, missing data in
defect regions that often occur at shiny surfaces, as well as temporal and spatial
noise that are due to the physical working principles of RI sensors were identified
as the most important error sources. Based on these observations, a pre-processing
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pipeline dedicated to RI data enhancement and high-performance image process-
ing on GPUs was developed. Specifically, the pipeline comprised the concepts of
normalized convolution for restoring missing data and bilateral filtering princi-
ples for both temporal as well as edge-preserving noise reduction. The results in
a highly dynamic scenario using synthetic range data computed from the well-
known NCAT phantom showed that this pipeline can reconstruct the ideal range
data with an error scale of <1.0 mm and a run-time of approximately 2.0 ms. An
important result from the experiments is that temporal denoising methods must
be used with care in a respiratory motion monitoring scenario. This is due to the
fact that such methods essentially correspond to an averaging or superposition of
respiration phases which is an error source especially during inhale and exhale,
respectively. An interesting result of this chapter was concerned with the run-time
performance of edge-preserving filtering. The results demonstrated that conven-
tional bilateral filtering, depending on the kernel size, often outperforms modern
constant time methods such as the concept of guided filtering. This was shown to
be due to the complex infrastructure required for the guided filtering that hinders
and efficient usage of the GPU computing resources.

Besides pre-processing methods for data enhancement, the fusion of range data
obtained by multiple sensors is an important prerequisite for further surface data
analysis. For this purpose, a novel framework that enables the reconstruction of a
high coverage body surface model was proposed in Chapter 5 of this work. The
core idea of this approach was to represent the individual RI surface data im-
plicitly using SDFs and to reconstruct an explicit representation using ray-casting
techniques. It was shown that conventional ray-casting methods based on a pin-
hole camera model are not capable to reconstruct a high coverage body surface
model that includes the frontal and lateral body surface. This is due to the di-
vergent viewing rays that are inherent to a pinhole camera model. To cope with
this issue this thesis proposed an approach where the individual viewing rays do
not originate from one single optical center but instead from multiple points on a
2-D manifold that surrounds the patient. This enabled the reconstruction of body
surfaces with 180◦ coverage and a 2-D topology as known from real-life RI sen-
sors. It was shown that this inherent 2-D topology allows to apply dedicated RI
data enhancement techniques to increase the SNR as well as the employment of
high performance methods for surface neighborhood analysis. The experiments
on synthetic data using the NCAT phantom showed that the proposed approach
is capable to reconstruct the ideal surface with an error in the scale of approxi-
mately 0.2 mm given run-times of less than 5.0 ms. For real-life RI data from male
subjects, a qualitative analysis showed that the reconstructed surfaces exhibit dis-
tinct anatomical landmarks.

Respiratory Motion Analysis Using 4-D Shape Priors Part III of this thesis was
concerned with the principle of using 4-D shape priors for respiratory motion anal-
ysis. Building upon this concept, a unifying framework for the clinical problems of
motion compensated patient positioning and continuous respiratory motion anal-
ysis was developed.
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The foundations and theoretical background of 4-D surface motion models
were covered in Chapter 6. This thesis proposed to non-rigidly register patient
specific body surfaces acquired at discrete respiration states in conjunction with di-
mensionality reduction techniques to train continuous surface motion models. An
important aspect of non-rigidly registered body surfaces is the fitness of the corre-
sponding displacement fields for respiratory motion analysis. This thesis investi-
gated different non-rigid surface registration techniques and developed condition
metrics that allow to quantitatively asses displacement fields regarding their sta-
bility to differentiate between shifts and rotations caused by global patient move-
ment on the one hand and respiration induced deformations on the other hand.
The experimental results for this issue show that displacement fields covering the
entire body surface exhibit a better condition compared to displacement fields of
small body surface regions. This is a strong argument for using high coverage
body surface data as for example proposed in Chapter 5 of this thesis.

Regarding dimensionality techniques for training motion models, one key find-
ing of this thesis is that linear dimensionality reduction techniques such as PCA
are sufficient to capture the entire range of breathing patterns with only two modes
of variation. In contrast to typical non-linear dimensionality reduction techniques,
a small number of training surfaces are thus sufficient for model generation. This
is of particular importance if the training samples are limited as for example with
surfaces extracted from tomographic planning data acquired by CT or MRI. How-
ever, it was shown that conventional PCA-based models exhibit abstract and global
deformations modes that hinder an intuitive manual interpretation as well as the
automatic derivation of anatomical plausible respiration surrogates. To cope with
this issue, this thesis proposed a framework based on factor rotations that allows to
transform the conventional PCA models to so-called WVR models that enable an
unsupervised decomposition of body surface displacement fields into a thoracic
and an abdominal component.

The actual application of 4-D motion models for respiratory motion analysis
was covered in Chapter 7 of this work. In particular, this chapter introduced a
framework that unifies the problems of motion compensated patient positioning
and continuous respiratory motion analysis. The governing idea here is that these
tasks can be formulated mathematically as the registration of pre-procedurally
trained 4-D motion models to intra-procedurally acquired RI surface data. For
this purpose, a dedicated registration scheme based on the CPD principle was
developed. This method formulates the model registration task as a density esti-
mation problem and can essentially be interpreted as a multi-link ICP variant that
is robust to outliers that are common with RI.

This thesis performed a thorough investigation of the methodology that gov-
erns the CPD method. First, for the point correspondence problem being an in-
tegral component of ICP-like methods, this work investigated the RBC and PDA
schemes for fast nearest neighbor queries. In contrast to the RBC being a generic
space partitioning strategy designed for GPU architectures, the PDA scheme ex-
ploits the 2-D topology and projective properties that are inherent to the high cov-
erage RI surface data as proposed in Chapter 5 of this thesis. For a typical corre-
sponding points query using a 25 point neighborhood, the PDA scheme exhibits a
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run-time of about 0.15 ms and outperforms the RBC by a factor of approximately
46. As a further essential component of ICP-like methods, this work investigated
the P2P and the P2T criterion to quantify the alignment match of the motion model
and the RI surface. It was shown that the iterative CPD scheme using the P2T met-
ric consistently requires less than half of the number of iterations compared to
using the P2P metric. Moreover, the results demonstrated that a P2T metric is su-
perior to the P2P metric in terms of misalignment and initial guess for the sought
registration parameters. Regarding the registration accuracy for the P2T metric,
the experiments demonstrated that the second quartile of the M2S to quantify the
closeness of the model to the surface is consistently less than 0.5 mm. Further,
using range data that was corrupted by more than 5.0 mm for 25% of the measure-
ments, it was shown that the CPD-like registration scheme is robust to outliers.

For continuous respiratory motion analysis, this thesis proposed anatomical
plausible respiration surrogates that are derived from the model’s inherent param-
eters. The governing idea here is that 4-D shape priors essentially encode body
surface displacement fields that may be interpreted as a surrogate that reflects
the body surface extent. For the proposed WVR models, in contrast to standard
PCA models, it was shown the proposed surrogates yield a statistically significant
PCC of more than 0.97 compared to conventional RI-based surrogates that mea-
sure depth variations in manually selected thoracic or abdominal regions. Further,
the experiments conducted in this thesis show that the model-based surrogates
highly correlate with a respiration signal obtained from an IP sensor that measures
the change of lung volume. Besides the application of 4-D shape priors for con-
tinuous respiratory motion monitoring, this thesis also showed that incorporating
prior knowledge on respiration-induced body surface deformations substantially
decreases the alignment error for patient positioning. This motion compensated
positioning strategy reduces the error by a factor of about 3 compared to conven-
tional alignment schemes that do not account for respiratory motion.

Outlook and Summary The thesis is concluded in Part IV with an outlook and
the summary at hand. In particular, future research directions regarding both
hardware and methodological aspects were discussed and challenges towards clin-
ical translation of the proposed methods investigated.
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Appendix

A GPU Programming Paradigms: Case Study Confidence
Maps

The general principles and issues of GPU programming can best be understood
by considering a specific problem. For this purpose, the problem of associating
a reliability or confidence indicator to range measurements is investigated. This
problem exhibits the most important aspects that are of relevance for GPU pro-
gramming in the RI based respiratory motion analysis problem investigated in
this thesis.

One specific confidence indicator C for range data is based on the angle be-
tween the surface normal N at a certain 3-D point and the direction from which
this point was observed, see Section 3.2.2 for details and other reliability indica-
tors. Neglecting the data representation details and RI sampling principles that
are covered in Section 3.2, all data in range imaging is organized on a 2-D regular
grid with N1 × N2 indices. 3-D surface points S can be computed from the 1-D
range measurements R as obtained from the RI sensor using the corresponding
observation direction. This observation or viewing direction is data independent
and uniquely defined on each grid element by the intrinsic parameters of the RI
sensor. In contrast, the surface normalsN must be computed on a per-frame basis
from the instantaneous 3-D surface data. Surface normals are calculated by using
the cross product of partial derivatives that, by taking advantage of the regular
grid layout, can be calculated using central, backward or forward differences of
neighboring surface points in S . The problem of computing confidence values ex-
hibits a high degree of data parallelism as the same instructions are issued for all
data points. Further, the computation has typically to be performed for several
hundreds thousands of elements and thus perfectly fits the massive parallel com-
putation paradigm of GPGPU computing. However, care has to be taken w. r. t. the
hierarchical memory model in order to achieve maximum performance.

A naïve approach would pre-compute the data-independent acquisition direc-
tions and re-use them (1) for computing the 3-D surface points from the 1-D range
measurements and (2) to compute the final confidence measure. This approach is
outlined in Algorithm 1. Though re-using the pre-computed viewing directions re-
duces the number of arithmetic operations this approach lacks an efficient memory
management as the data must be stored in off-chip global memory. To make things
worse, surface normals computation using finite differences as outlined in Line 11
requires the neighboring surface points at positions i1 ± 1 and i2 ± 1 where ±1
depends on whether forward, central or backward differences are used. The naïve
approach would load this data from global memory for each index pair (i1, i2)
independently, despite the fact that this data can be re-used across neighboring in-
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Algorithm 1 Naive parallel confidence computation. Data (V ,S) is re-used for
the purpose of less arithmetic operations at the cost of excessive access to global
memory (G) for both scalar valued as well as three-tuple data.

1: Input: Range measurementsR ∈ RN1×N2 . G
2: Input: Pre-computed 3-D viewing directions V ∈ RN1×N2×3 . G
3: Output: Confidence map C ∈ RN1×N2 . G
4: for i1 = 0→ N1 − 1 do in parallel
5: for i2 = 0→ N2 − 1 do in parallel
6: S (i1, i2) = CalcCoord (R (i1, i2) ,V (i1, i2)) . G→ G
7: end for
8: end for
9: for i1 = 0→ N1 − 1 do in parallel

10: for i2 = 0→ N2 − 1 do in parallel
11: N (i1, i2) = CalcNormal (S (i1, i2) ,S (i1 ± 1, i2 ± 1)) . G→ G
12: C (i1, i2) = CalcConfidence (N (i1, i2) ,V (i1, i2)) . G→ G
13: end for
14: end for

Algorithm 2 Block-wise parallel confidence computation with a fixed block size of
B1 × B2 elements. The method uses a dedicated sub-routine ComputeConfidence
listed in Algorithm 3 that performs on-the-fly calculation of intermediate results
for solely scalar valued global memory (G) access. Static sensor parameters are
kept in constant memory (C).

1: Input: Range measurementsR ∈ RN1×N2 . G
2: Input: Static camera parameters p . C
3: Output: Confidence map C ∈ RN1×N2 . G
4: for i′1 = 0→ dN1/B1e do in parallel
5: for i′2 = 0→ dN2/B2e do in parallel
6: B = [i′1B1, . . . , (i′1 + 1)B1]× [i′2B2, . . . , (i′2 + 1)B2] ∈NB1×B2

7: C(B) = ComputeConfidence(R, p, B) . G→ G
8: end for
9: end for

dices. This follows directly from the definition of finite differences. In fact, though
the problem’s inherent degree of parallelism is optimally exploited, such an ap-
proach is not efficient in practice as most of the time is spent in loading data from
and writing data to global memory.

An approach that takes advantage of the GPU architecture now comprises the
following two concepts: first, computations are performed multi-threaded but
block-wise and the data is shared across a block and re-used by the individual
threads. Second, intermediate results, i. e. the pixel-wise 3-D observation direc-
tions, surface points and normals, are not stored persistently in global memory
but kept in volatile memory, i. e. registers or shared memory. In fact, the input as
well as the output of the confidence computation routine is a scalar valued func-
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Algorithm 3 Block-wise parallel confidence computation with a fixed block size of
B1 × B2 elements. The block is processed concurrently in i1 direction but sequen-
tially along the i2 direction. The algorithm exhibits few access to global memory
(G), re-uses data across neighboring threads using shared memory (S) and keeps
intermediate results in local registers (R). Note that each global index i(1,2) has a
unique local identifier t(1,2) ∈ 0, . . . , B(1,2) − 1 inside the block, cf. Fig. 2.5.

1: Input: Range measurementsR ∈ RN1×N2 . G
2: Input: Static camera parameters p . C
3: Input: Block configuration B ∈NB1×B2

4: Output: Confidence map C ∈ RN1×N2 . G
5: for all i1 ∈ B do in parallel
6: S[0][t1] = R (i1, min(i2 ∈ B)) . G→ S
7: S[1][t1] = R (i1, min(i2 ∈ B) + 1) . G→ S
8: for all i2 ∈ B do
9: [v1, . . . , v4] = CalcViewDirs(p, i1 ± 1, i2 ± 1) . C→ R

10: [c1, . . . , c4] = CalcCoords(S[0, 1][t1 ± 1], [v1, . . . , v4]) . S→ R
11: n = CalcNormal([c1, . . . , c4]) . R→ R
12: v = CalcViewDir(i1, i2) . C→ R
13: C(i1, i2) = CalcConfidence(v, n) . R→ G
14: S[0][t1] = S[1][i1] . S→ S
15: S[1][t1] = R (i1, i2 + 2) . G→ S
16: end for all
17: end for

tion and redundant computations are potentially cheaper than access to global
memory [NVID 13].

This GPU friendly approach is outlined in Algorithm 2 and for block-wise com-
putation uses a dedicated sub-routine ComputeConfidence that is listed in Algo-
rithm 3. Compared to the naive approach, this version exhibits a substantially
reduced global memory access which is due to the facts that intermediate results
are calculated on-the-fly and data is shared across neighboring threads as listed
in Line 10. However, it is worth noticing that not the 3-D coordinates itself are
shared but only the corresponding 1-D range measurements. This entails an over-
head w. r. t. arithmetic operations that in fact are redundant but comes with only
one third of shared memory requirements for both size and bandwidth. As out-
lined in Section 2.3.1 resource requirements can influence the number of tasks that
are executed in parallel and, though featuring a high bandwidth, shared memory
is rather slow compared to registers. Resource saving is also achieved by using a
mixed parallel and sequential processing approach as listed in Lines 5 and 8. This
results in memory requirements that solely depend on the size of the block in the
i1 direction with full data sharing along the i2 dimension, see also the data fetch-
ing from global memory in Lines 14 and 15. Such a mixed parallel and sequential
approach that is often referred to as cascading or persistent blocks is commonly used
in GPU computing and has proven to increase performance [Mart 12].
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The importance of a proper design w. r. t. the GPU memory model is underlined
by a run-time analysis of the naive and the optimized approach. For an image res-
olution of 640× 480 pixels and using a manually determined optimal block config-
uration on a GTX 680 GPU, the naive approach has a run-time of 0.6 ms whereas
the optimized version features a superior run-time of only 0.06 ms, for details on
the test system and profiling principle see Appendix B. Though the absolute val-
ues are low for both approaches and the difference is of no practical relevance
when considering the confidence computation as a standalone module, a speedup
of a factor of 10 is of high relevance for filter pipelines in a multi-sensor setup or
complex iterative algorithms that require several hundreds of steps. For respira-
tory motion analysis this also means that latency is reduced, thus allowing for an
instantaneous system response with minimal latencies.

B GPU Performance Assessment Setup

Performance studies in this thesis are conducted on an off-the-shelf Windows 7
desktop PC equipped with an Intel Core i7 3770K CPU and an NVIDIA GTX 680
GPU (CUDA version 5.0) operating in Windows Display Driver Model (WDDM)
mode, i. e. the GPU is not dedicated to general purpose computing only and thus
is subject to scheduling on the driver side. Further, both the employed CPU as
well as the GPU have a so-called boost mode that, permitting among others ther-
mal conditions, automatically overclocks the device which potentially results in
fluctuations of measured run-times. To account for these issues, the reported run-
times are averaged over several runs.

C Range Measurement Representations

This section provides a detailed description of the two different types of range
measurement representation as introduced in Section 3.2.

Radial Depth Measurements From the definition of camera coordinate systems
in Eq. (3.4) and the projection operator from Eq. (3.7) it follows that the relation-
ship between a world space coordinate xW and the corresponding radial depth
measurement R<

k (i) at position i = Pk (xW) for the k-th camera can be expressed
as:

R<
k (Pk (xW)) =

∥∥∥∥Tk

(
xW
1

)
−
(

0
1

)∥∥∥∥
2
= ‖xk‖2 . (9.1)

Here, the zero vector 0 ∈ R3 encodes the local camera origin ok that is independent
from the actual pixel index i. Further, ‖·‖2 denotes the L2-norm. Of course, this
model neither accounts for occlusions nor reflects the actual range sampling prin-
ciple of modern RI sensors. Yet, it provides the basis for the reconstruction of a
3-D points given a set of depth measurements in accordance with the generic 3-D
reconstruction model from Eq. (3.13) as:

Sk (i) = xk,i = R<
k (i) · v<

k,i. (9.2)
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The viewing rays v<
k,i describe the inverse projection, i. e. all points xk,i that are

perspectively projected onto the same pixel index i. Given a point xk defined in
the k-th camera space, it follows from the projection in Eq. (3.5) that:

xk = C−1
k ĩ = λC−1

k

(
i
1

)
, λ ∈ R. (9.3)

Thus, all points lying on the line defined by λC−1
k

(
i>, 1

)>
are projected to the

same pixel index and the viewing ray v<
k,i at pixel index i is consequently given as:

v<
k,i =

v<
k,i∥∥∥v<

k,i

∥∥∥
2

, v<
k,i = C−1

k

(
i
1

)
. (9.4)

From the definition of the camera matrix in Eq. (3.6) it follows directly that its in-
verse C−1

k is given by a closed form solution:

C−1
k =


1

fk,1
0 − 1

fk,1
ck,1

0 1
fk,2
− 1

fk,2
ck,2

0 0 1

 . (9.5)

Thus, the radial viewing rays v<
k,i as described in Eq. (9.4) can be simplified in a

straight forward manner to:

v<
k,i =

v<
k,i∥∥∥v<

k,i

∥∥∥
2

, v<
k,i =

(
i1 − ck,1

fk,1
,

i2 − ck,2

fk,2
, 1
)>

. (9.6)

Orthogonal Depth Measurements Compared to radial depth measurements or-
thogonal depth measures are an alternative yet equivalent depth representation
defined as:

R⊥k (Pk (xW)) = (0, 0, 1)>
(

Tk

(
xW
1

)
−
(

0
1

))
= (0, 0, 1)> xk = xk,3. (9.7)

Given the fact that both representations are equivalent and thus must reconstruct
the same 3-D point, i. e. :

Sk (i) = R<
k (i) · v<

k,i = R
⊥
k (i) · v⊥k,i, (9.8)

it follows from the definition of radial range values in Eq. (9.1) and orthogonal depth
measurements in Eq. (9.7) that the following relationship holds true:

v⊥k,i =

(
x2

k,1

x2
k,3

+
x2

k,2

x2
k,3

+ 1

) 1
2

· v<
k,i . (9.9)

Using the perspective projection model from Eq. (3.5) that describes the relation-
ship between xk and the pixel index i, this translates to:

v⊥k,i =

((
i1 − ck,1

fk,1

)2

+

(
i2 − ck,2

fk,2

)2

+ 1

) 1
2

· v<
k,i . (9.10)

This is the non-normalized viewing ray derived in Eq. (9.6).
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D Data Specification for Respiratory Motion Analysis

This section provides the detailed specification of the test data used for the respi-
ratory motion analysis experiments in Chapter 6 and Chapter 7.

Table D1: Training and evaluation data specification for subjects S1–S4. Listed
are the number of frames in thoracic (T), abdominal (A) and regular (R) breath-
ing sequences. For the training stage, the normalized cumulative variances λ′i =

∑i
s=1 λs/ ∑3

s=1 λs are additionally reported for PCA and WVR models.

Training Testing

Frames λ′1 λ′2 λ′3 Frames

|T| |A| WVR PCA WVR PCA WVR PCA |T| |A| |R|
S1 6 5 0.76 0.79 0.98 0.98 0.99 0.99 167 112 272
S2 6 6 0.72 0.76 0.99 0.99 0.99 0.99 118 122 324
S3 5 5 0.53 0.67 0.98 0.98 0.99 0.99 235 156 354
S4 7 6 0.84 0.85 0.96 0.96 0.99 0.99 89 168 328

Table D2: Data for the IP sensor experiment. Shown are the number of frames
in the thoracic (T) and abdominal (A) training sequences and the resulting WVR
model variances λ′i (cf. Table 6.3). For the testing stage, the number of frames
in phases of abdominal (P1), thoracic (P2), fast shallow (P3), fast strong (P4), slow
shallow (P5), slow strong (P6) and breath hold (P7) breathing instructions are listed.

Training Testing

Frames WVR Frames (|Pi| · 103)

|T| |A| λ′1 λ′2 λ′3 |P1| |P2| |P3| |P4| |P5| |P6| |P7|

S5 7 6 0.64 0.93 0.97 1.6 1.5 0.9 0.9 1.5 1.6 3.4
S6 7 6 0.87 0.97 0.99 1.6 1.6 0.8 0.8 1.5 1.7 3.4
S7 7 6 0.50 0.94 0.97 1.5 1.6 0.9 0.8 1.6 1.5 3.3
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