# Introduction to Pattern Recognition

WS 13/14



### Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

### Overview



- Administrative information
- A short journey through

# Introduction to Pattern Recognition

Pattern Recognition in practice

## Introduction to Pattern Recognition (IntroPR)



- Lecture (3 SWS 5 ECTS)
  - Tue 10:15 11:30 (0.68)
  - Wed 10:15 11:30 (0.68)
  - Elli Angelopoulou
  - elli@i5.cs.fau.de
- Exercises (1 SWS 2.5 ECTS)
  - Wed 14:15 15:45 (02.134) or
  - Fri 10:15 11:45 (00.151)
  - 45 minute session
  - Simone Gaffling
  - simone.gaffling@cs.fau.de
- Exercises are application-oriented

### Intro PR - Exams



### Certificates

- Oral exam at the end of the semester
- Graded certificate (benoteter Schein) or exam through the Prüfungsamt
  - 7.5 ECTS 30 min. oral exam on lecture and exercises
  - 5 ECTS 30 min. oral exam on lecture material only
- Pass/Fail certificate (unbenoteter Schein)
  - 7.5 ECTS 30 min. oral exam on lecture and exercises
  - 5 ECTS 30 min. oral exam on lecture material only

### Additional Material for IntroPR



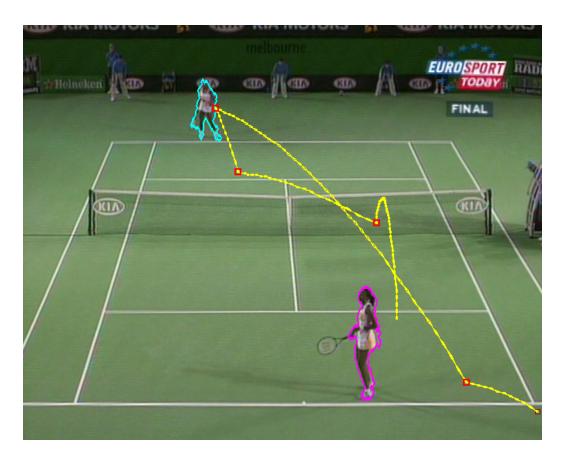
- When applicable, printed slides will be made available through the web.
- The videotaped lectures from Winter Semester 2012 are available at **video.cs.fau.de**
- You are still expected to take notes yourself.
- Slides and notes do not replace the textbooks (see next slide).
- Most of the slides can be understood only with the additional explanation provided during the lecture and through the use of additional material from textbooks.

### PR Reading Material:



### Recommended Textbooks:

[1] H. Niemann. *Klassifikation von Mustern*. Springer, Berlin, Heidelberg, 1983. Second expanded edition available via Internet:


http://www5.informatik.uni-erlangen.de/en/our-team/niemann-heinrich

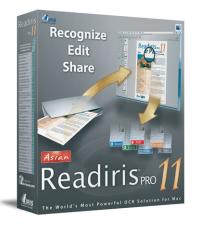
- [2] S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, 4th ed. Academic Press, 2009.
- [3] R. Duda, P. Hart, D. Stork, *Pattern Classification*, 2nd ed., Wiley Interscience, 2001.

## What is Pattern Recognition?



 Pattern Recognition involves the design of systems which (semi) automatically recognize patterns in sensed data.




## Pattern Recognition in Everyday Life















## Components of a Pattern Recognition System



#### Sensor

- Collect information
- Camera, microphone, sonar, X-ray machine

### Preprocessing

- Remove noise from the collected information
- Bring data in a standardized format

#### Extract Features

- Compute numeric or symbolic information from the "raw" collected data
- Selection of appropriate features has great impact on the success of a PR system

### Classification

- Main recognition step
- Machine learning (supervised or unsupervised)

### Pattern Recognition Topics



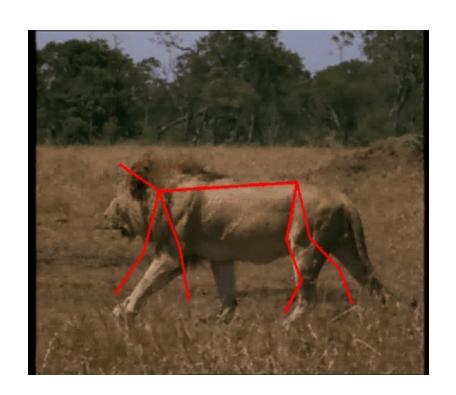
- Signal Acquisition
- Preprocessing
- Feature Extraction
- Feature Reduction
- Classification (continued in PR and PA)
- Pattern recognition is at the borderline between computer science and electrical engineering.
- Topics of pattern recognition in Erlangen: medical image processing, computer vision, speech processing and digital sports.

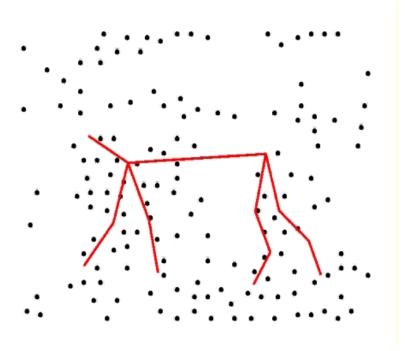
### Signal Acquisition



- Depending on the application we can use different types of sensors to acquire data:
  - microphones
  - cameras
  - Xrays, MRIs, CTs, ultrasound
  - GPS sensors, gyroscopes
  - heartrate monitors, perspiration sensors, blood pressure sensors
  - ....
- Once the type of sensor is selected, choosing a particular model can have a significant impact on the overall performance of our PR system:
  - noise levels
  - data acquisition speed
  - amount of collected information
  - built-in preprocessing

### Feature Extraction/Selection




Are point features sufficient for object recognition?

### Recognition based on Point Features





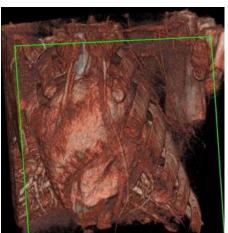


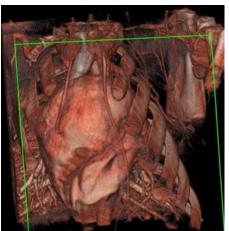
Videoclips courtesy of Ruixuan Wang, Wee Kheng Leow and Hon Wai Leong, "3D-2D Spatiotemporal Registration for Sports Motion Analysis", CVPR 2008

## Challenges - Medical Image Processing



- Need for accuracy
- Thorough evaluation




Coronary tree extraction





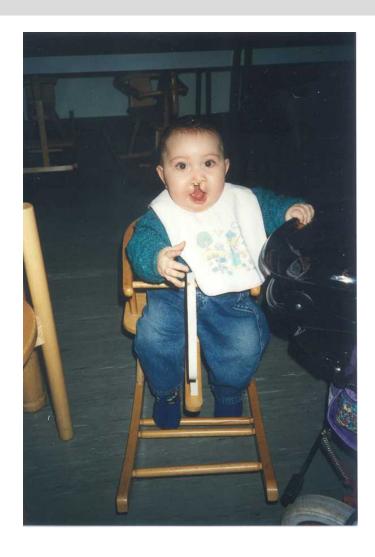




Correction for heartbeat motion using ECG (top) and just image data (bottom)

## Challenges – Speech Recognition




- Why is speech recognition so difficult:
  - Ambiguities (here vs. hear)
  - Emotions
  - Non-distinctive articulation
  - Accents/Dialects
  - Technical problems (microphones, encoding, ...)

#### Also:

Diseases of the oral apparatus

### Cleft Palate

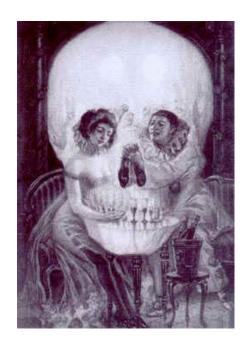






## Spontaneous Child Speech



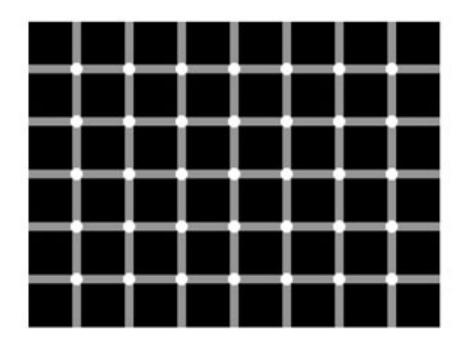



geradeaus Aibolein ja M fein M gut M machst M du M \*da M | \*tz läufst du mal bitte nach links | stopp E Aibo stopp | nach links E umdrehen | nein M <\*ne> nein M <\*ne> nein M <\*ne> so M weit M \*simma M noch M nicht M aufstehen M Schlafmütze M komm M hoch M | ja M so M ist M es M <\*is> guter M Hund M lauf mal jetzt nach links | nach links Aibo | Aibolein M aufstehen M \*son M sonst M werd' M ich M böse M hoch E | nach A links A | Aibo A nach A links A | Aibolein A ganz A böser A Hund A jetzt A stehst A du A auf A | hoch A | dreh dich ein bisschen | ja M so ist es <\*is> gut stopp Aibo stopp | \*tz lauf g'radeaus

### Challenges – Computer Vision



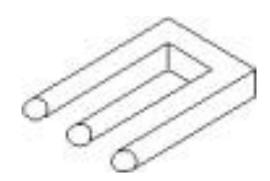
- Why is computer vision so difficult:
  - Ambiguities
  - Implicit knowledge
  - Prior information
  - Technical problems (noise, limited data, encoding...)

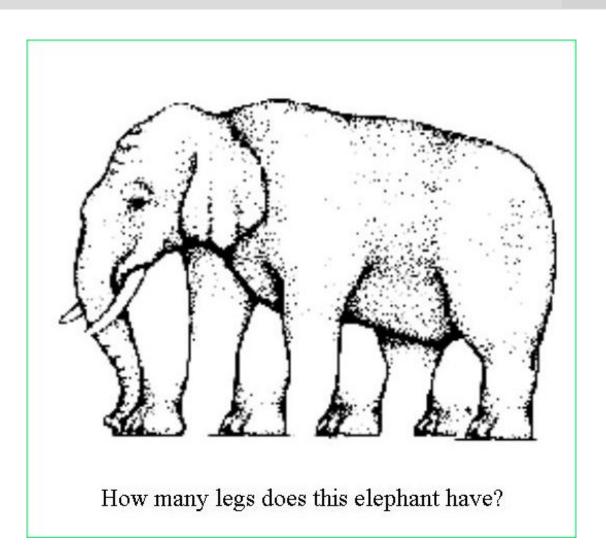



#### **BEFORE 6 BEERS**



# Influence of Entire Image






## Implicit Knowledge







### Is it Hopeless?



- We have a structured way of processing incoming signals (sound, light, etc.) in order to identify what is being conveyed by that signal.
- This framework (the Pattern Recognition pipeline) is general and can be applied to a variety of situations.
- There are many challenges.
- Can such a general framework be effective?

### DARPA Grand Challenge



- A prize competition for driverless (autonomous) cars organized by DARPA (Defense Advanced Research Project Agency), the research oprganization of the USA Department of Defense.
- "DARPA Grand Challenge" of 2004 Mojave Desert, CA, 240km
  - No competitor of the 21 participants finished the race
  - CMU won for completing the longest distance 11.78km
- "DARPA Grand Challenge" of 2005 Mojave Desert, CA, 212km on a wider road with fewer curves
  - 5 out of the 23 (22%) participants finished the race
  - 22 out of the 23 participants surpassed the 11.78km distance.
  - 1st place: Stanford's "Stanley" (VW Touareg) after 6:54hrs of driving
  - 2<sup>nd</sup> place: CMU's "Sandstorm" at 7:05hrs
  - 3<sup>rd</sup> place: CMU's "Highlander" at 7:14hrs

## **DARPA Grand Challenge**





# DARPA Grand Challenge Bloopers





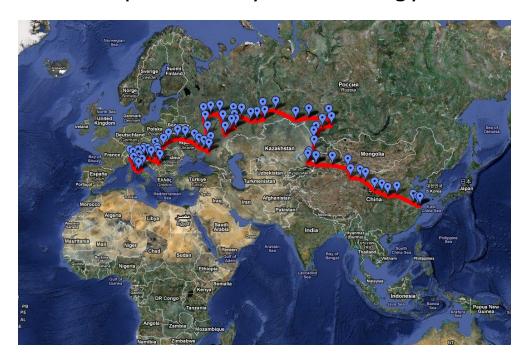
### DARP Urban Challenge Event



- Goal: Autonomous driving in an city setup
- Course:
  - 96km to be completed in less than 6hrs
  - Obey all traffic regulations
  - Handle obstacles and other cars on the road
  - Merge into traffic
- Day of Final Event: November 3, 2007
- Results:
  - 35 participants, 11 passed to the finals
  - 6 out of 11 finalists (55% of finalists, 17% of participants) completed the course
  - 1st place: CMU (Chevy Tahoe) after 4:10hrs of driving
  - 2<sup>nd</sup> place: Stanford (Volkswagen Passat) at 4:29hrs
  - 3<sup>rd</sup> place: Virginia Tech at 4:36hrs
  - Followed by MIT, UPenn and Cornell

### DARPA Urban Challenge Event






You can watch this video at <a href="http://youtu.be/AABag3lLy5E">http://youtu.be/AABag3lLy5E</a>

### VisLab Intercontinental Challenge



- Goal: Autonomous driving from Parma, Italy to Shanghai, China
- Course:
  - 13,000km of regular roads
  - Estimated travel time approx. 3 months (20. Jul 2010, 26 Oct. 2010)
  - 4 electric vehicles powered by solar energy



### VisLab Intercontinental Challenge (2)



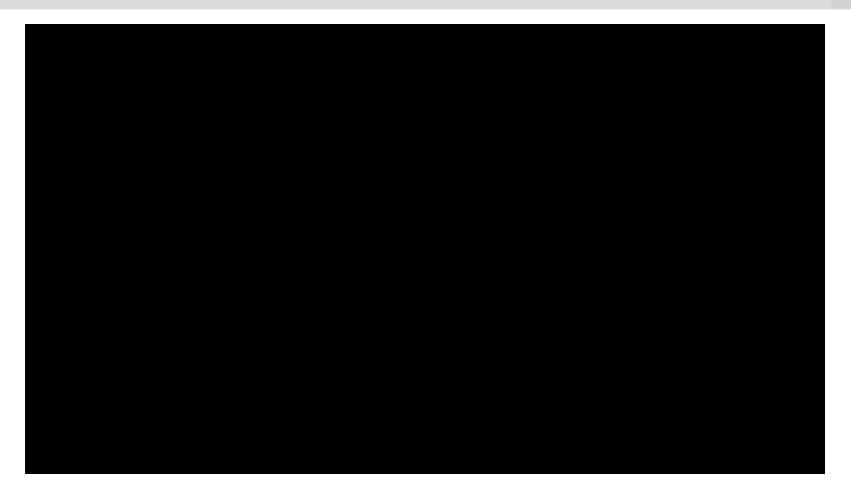
#### Leader-Follower Model

- First car drives autonomously most of the time. It collects a significant amount of data and performs tests on sensing, decision and control systems. Human intervention is needed for route selection and in critical situations.
- The 2nd car automatically follows the route defined by the preceding vehicle. It is 100% autonomous.
- If the leader is visible, it follows it.
- If the leader is not visible, it uses the GPS coordinates that the leader has determined as part of the route.
- The follower uses local sensing to refine its position on the road, avoid obstacles and determine speed.

## VisLab Intercontinental Challenge (3)






# VisLab Intercontinental Challenge (3)





## VisLab Latest Accomplishment





For additional videos and information check out <a href="http://vislab.it/video/">http://vislab.it/video/</a>