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Pattern Recognition Pipeline 

n  Feature Extraction 
§  Heuristic feature extraction methods 

§  Analytic feature extraction methods 

n  Feature Selection 

 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	



Learning Training samples 
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Why Feature Selection? 

n  There are many methods for feature extraction (e.g. 
Walsh/Hadamard Transform, moments, PCA, etc.). 

n  We often apply more than one set of feature 
extraction methods, e.g. Fourier Transform and 
moments on color data.  

 n  More data is better data. 

n  Curse of dimensionality. 

n  So what should one do? 

n  Use fewer but highly discriminating features. In 
other words lower the dimensionality of the 
(combined) feature vector    .    
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New Feature Vector 
n  However, we need a systematic way of selecting which features, 

(i.e. which elements of the feature vector) will be used in the next 
step of the pattern recognition pipeline, i.e. in the classification. 

n  We started with a signal vector of dimensionality N.  

n  Through feature extraction we created a new vector       that 
emphasizes the information within the input signal that is 
characteristic for the pattern recognition problem at hand.  

n  Through feature selection we want to create a more compact, yet 
at least equally discriminating vector 
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Feature Selection 

n  Feature selection: Given M features, find the optimal 
subset with M', M'< M, features which minimizes the 
probability for misclassification. 

n  The best subset of M' features has the property, that 
there exists no subset with                   features 
which yields a smaller probability of misclassification. 

n  Generally, it is impossible to find the best subset of 
features without examining all possible subsets. 

n  For a lower computational cost, we need to 
compromise and search for a suboptimal set. 
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K,   K ≤ # M 
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Feature Selection Algorithms 

n  There are many different feature selection methods. 

n  Algorithms for feature selection are characterized by: 

1. The objective function (a.k.a. criterion function) 
used in evaluating the “goodness” of a subset. 

2. The optimization method used in searching the 
space of possible subsets for the best subset.  

n  Since the search space is composed by the different 
subsets, we have a discrete search space, which 
means that we have a discrete optimization problem. 
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Objective Function Properties 

n  The objective function used in feature extraction 
should satisfy the following requirements: 

1. It should be simple, in terms of computational 
efficiency, to evaluate. 

2. It should properly approximate the misclassification 
error. 

3. It should avoid complete testing of all possible 
subsets. 
  Example: Consider the case where M=300, M’=30. 
  An exhaustive search would involve the evaluation of: 
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Some Objective Functions   

n  There are four widely-used good objective functions 
which closely approximate the misclassification error: 

1. Error-rate: 

  The goal is to minimize the error rate     .  
2. Bayesian Distance: 

   where       is the space of all possible feature vectors. 
Large B values denote that on average one can safely 
classify the sample. So we try to find the new feature 
vector that maximizes B. 
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pf =
#  of misclassifications
#  of classified samples
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A Review of Entropy 

3.  Conditional Entropy: 
n  The entropy, H(X), of a discrete random variable X is 

a measure of the amount  of uncertainty associated 
with the value of X. 

n  The conditional entropy, H(X|Y), of a discrete 
random variable X, given another random variable Y, 
is a measure of the amount of uncertainty regarding 
the value of X that remains after we already know 
the value of a 2nd random variable Y. 
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H X( ) = − p(x)log p(x)( )
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A Review of Entropy - continued 

n  For a particular value y of Y, the conditional entropy 
is defined as:   

n  For any possible value of Y, we just "average" over 
all possible Y values: 

n  In a pattern recognition system of K classes, the 
conditional entropy of class Ωκ given a feature 
vector      is: 
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Entropy-Based Objective Function 

n  This conditional entropy: 

 can be used as an objective function for feature 
selection. 

n  The conditional entropy is a measure of the amount 
of uncertainty associated with belonging to class Ωκ, 
given that we have already observed the feature 
vector    . 

n  We want to choose a feature vector that minimizes 
the uncertainty in classification. 

n  We want to minimize this uncertainty, minimize H().  
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A Review of Mutual Information 

4.  Mutual Information: 
n  Mutual information, I(X,Y), is a measure of 

“information similarity" between 2 random variables 
X and Y.  

n  It measures the amount of information that can be 
obtained about one random variable, X, by observing 
another random variable, Y. 

n  It measures the amount of information about X that 
is shared with Y. 

n  It is closely related to entropy H(). 
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A Review of Mutual Information - continued 

n  Typically mutual information I(X,Y) is defined as: 

n  It is also often defined in terms of entropy: 

n  Lastly, it can also be expressed in terms of the 
Kullback-Leibler divergence. The Kullback-Leibler-
Divergence (KL-divergence) is a measurement of the 
similarity of two probability distributions, p(X) and 
q(X):  

€ 

MI = I X,Y( ) = p(x,y)
−∞

∞

∫ log p(x,y)
p1(x)p2(y)

% 

& 
' 

( 

) 
* 

−∞

∞

∫ dxdy

€ 

MI = I X,Y( ) = H(X) −H(XY ) =H(Y ) −H(Y X)

€ 

MI = KL p,q( ) = p(x)log p(x)
q(x)
" 

# 
$ 

% 

& 
' dx

−∞

∞

∫



 Seite 14 

Page 14 

KL Divergence – Based Objective Function 

n  Consider the probability distribution function of a 
particular feature vector      belonging to a specific 
class Ωκ.  

n  If the feature vector     and the class Ωκ were 
completely unrelated, i.e. they were statistically 
independent variables, then their joint probability 
distribution             would be: 

n  But that means that we get no information about Ωκ 

by observing     .  
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KL Divergence – Based Objective Function  

n  Thus, we want to make              and                  as 
different as possible. 

n  We want to have the probability distribution of    
and of                  as dissimilar a possible.  

n  In other words, their Kullback-Leibler divergence 

 should be maximized. 

n  Note: The Kullback-Leibler divergence is not a true 
metric since it is not symmetric and does not satisfy 
the triangle inequality.  
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Summary of the Four Objective Functions 

n  There are four widely used objective functions: 
1.  Error-rate (minimize) 
2.  Bayesian distance (maximize) 
3.  Conditional entropy (minimize) 
4.  Mutual information (maximize) 

n  All of these evaluation functions have the following 
advantages: 
1.  Very good approximations for the probability of 

misclassification, 
2.  Can be used for K-class problems, 
3.  Have good theoretical foundations 

n  Common limitation: they are typically quite hard to 
evaluate. 



 Seite 17 

Page 17 

Comparison of the Objective Functions 

n  Let         be the error probability of the optimal 
classifier.  

n  It is a theoretical performance measure.  
n  It has been proven that: 

                                          

n  So we are getting closer to the optimal classifier if 
we use the Bayesian distance than if we use the 
conditional entropy, but the conditional entropy is 
somewhat more efficient to compute. 
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popt
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Specialization in Feature Selection 

n  When we have prior knowledge, it is quite common 
to do some kind of specialization, which typically 
means that we can assume some type of parametric 
distribution of features. 

n  For instance, we can assume that features are 
normally distributed (this is , for example, the case 
for features created via PCA). 

n  Then the statistics of the feature vector are 
captured by the mean and the covariance matrix. 

n  If we know that features are normally distributed we 
can take advantage of special properties of normal 
distributions in doing our feature selection. 
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Specialization in Feature Selection - cont 

n  Consider for example a vector                   which is 
normally distributed                 

 where      is its mean vector and       its covariance. 
n  Assume that out of this vector we only want to 

select elements x and y. 
n  What is the probability distribution of the resulting 

2-elt vector (x,y) if we know that      is normally 
distributed? What is           ?  

n  We know that              is a normal distribution. How 
does it change when we remove    ?  
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 u T = (x,y,z)

    

€ 

 u ≈N ( u ,  µ u,Σu)

  

€ 

 
µ u

€ 

Σu

  

€ 

 u 

€ 

p(x,y)

€ 

p(x,y,z)

€ 

z



 Seite 20 

Page 20 

Specialization in Feature Selection - cont 
n  We can select only feature elements x and y as follows: 

 
n  Then the marginal density of (x, y) is: 

 

 (special property of normal distributions is that their marginals also follow 
the normal distribution) 
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Feature Selection Methods 

n  As previously stated, algorithms for feature selection 
are characterized by: 

1. The objective function (a.k.a. criterion function) 
used in evaluating the “goodness” of a subset. 

2. The optimization method used in searching the 
space of possible subsets for the best subset.  

n  Once an objective function is chosen, one has to 
systematically examine the different subsets of a 
feature vector.  

n  Each subset is evaluated, using the chosen objective 
function.  



 Seite 22 

Page 22 

Different Feature Selection Methods 

1.  Random Selection. 
 Use a random selection of features to include in    .  
 On average, this does not result in good feature 
vectors. 

2.  Exhaustive Search. 

 Select the M' features that give the best objective 
function values. 
 May be difficult to compute.  

 Choosing the features that give the best objective 
function values may not, after all, be the features 
that give the best classification results. 
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Different Feature Selection Methods - cont 

3.  Greedy (gierig). 
 Choose one feature at at time. Select the feature 
that best fits to the already existing ones, i.e. leads 
to the highest increase (or decrease) of the 
objective function value. 

4.  Hardest Pair. 
 Add the feature that contributes the most to the 
separation of the hardest class pair. 
 Or equivalently eliminate the feature with the 
smallest contribution to the separation of the 
hardest pair. 



 Seite 24 

Page 24 

Different Feature Selection Methods - cont 

5.  (l,r)-search. 
 Add the l strongest features while eliminating the r 
weakest ones.  

 Different variations: fix r and l , or keep one of them 
or both of them dynamic. 

6.  Branch and Bound. 
 Key idea: Use a monotonic objective function (e.g. 
mutual information) so that instead of rejecting a 
single feature      due to its low contribution, one 
can eliminate a set of features that all give lower 
contributions than     .  
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Branch and Bound 

n  The Branch and Bound algorithm is guaranteed to 
find the optimal feature subset under the 
monotonicity assumption. 

n  The monotonicity assumption states that the 
addition of features can only increase the value of 
the objective function (assuming a maximizing 
objective function): 

n  Branch and Bound typically starts from the full set 
and removes features using a depth-first strategy. 
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n  Consider a node v at level j. 
It includes a feature vector 
of dimensionality M-j, 

          
n  Each child of the node v 

corresponds to a feature 
vector obtained from         
by removing a different 
element from       . 

Branch and Bound - continued 

n  The search space is represented by a tree. 
n  The root node (at level j=0) corresponds to the 

entire feature set                  .   
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n  Recall that Branch and Bound assumes that the 
objective function is monotonic: 

Branch and Bound - continued 
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G(v) >G(child(v))

n  Due to this monotonicity, 
the parent node at level j 
has a higher objective 
function value than its 
children at level j+1. 

  

€ 

G(ci1
) < G(ci1

,ci2
) < G(ci1

,ci2
,ci3
) < < G(ci1

,ci2
,…,ci " M 

)



 Seite 28 

Page 28 

n  Keep in mind that: 
§    

§  Goal: maximize G()  

Branch and Bound - continued 
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n  Assume that at level j+1 
there exist a node       
whose objective function 
value is higher than that 
of a node           at the 
previous level j: 
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n  Facts: 

Branch and Bound - continued 
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n  The subtree rooted at the node          can be pruned. 
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n  Due to the monotonicity, 
of the objective function 
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