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m Classification
= Statistical classifiers

= Bayesian classifier

= Gaussian classifier

= Polynomial classifiers



Key Concepts of Polynomial Classifiers A

m Polynomial classifiers do not explicitly use statistical
information about the distribution of features (and
the associated classes) in feature space.

m Often their goal is to directly estimate an
approximation to the ideal decision function by a

polynomial.

m Typically, the designer of the classifier decides what
degree of polynomial to use.

m Deriving a polynomial classifier becomes equivalent
to computing the coefficients of these polynomials
from a labeled training set (supervised training).



Discriminant Function A)

m Consider a two class problem, of the form a feature
vector ¢ either belongs to a class or not.

B Examples:
= car/non-car
= person/non-person
= pass quality control/does not pass quality control.

m A discriminant function for class € _is a polynomial
that evaluates to 1 if the feature vector ¢ belongs
to that class. Otherwise it evaluates to zero.

@) 1 if cEQ
C —
. 0 otherwise



Assumption 1 A

1. Classification is done by using K (K= number of
classes) discriminant functions (Trennfunktionen).

d (c),d,(c),...,d.(C)
B We have as many discriminant functions as classes.

B Where in the statistical classifiers we had as many
posterior probabilities as we had classes, we now
have discriminant functions.

m We decide for the class Q, that achieves the
maximum discrimination/separation.
A =argmaxd _(¢)



Assumption 2 A

2. We assume that these K discriminant functions, d_(c),
belong to a parametric family of functions:

d (c)ed(c,a,)
where a,_ are the coefficients of the polynomial d_(c).

B For example, if I have parabolas as discirminant
functions, the functions are of the form:

—

— -7 —
d(c)=a.c +a,c+a., and a, =(a.,a,,,q,,)
B Instead of a parametric family of pdfs as in the

Gaussian classifier, we have a parametric family of
functions.



Optimal Decision Function N

m Ideally, an optimal decision function should map a
vector ¢ to class Q_ if it truly belongs to € :

~ 1 if ceEQ
o(c) =
O for all other classes

B Since we have a binary decision
function, we can build a binary K- ~ 0
dimensional decision vector with 0s () =
for all the wrong classes and 1 only
in the correct class €2..




Linear Discriminant Function A)

m Key question: How do we estimate the parameters
of the discriminant function?

B Consider a linear discriminant function:

d,(c)= (aw,am,. ..,aA’M) C,

d, (@) =a,c"

where M is the dimensionality of the feature vector
C =(CCpssCpy ), ¢ =(lc)sChs...C,, ) @nd M+1 is the
number of coefficients.

m We want to derive the values of a,; for i=0,....M
and A=1,....K from the training set.



Training Set A

m We have a training set T composed of N pairs of
feature vectors and their assigned class:

T ={(¢. Q)L =12.....N}
where Q_, is the class of feature vector c,.

B How can we use this training set?

m An ideal discriminant function d,(c) would assign a
sample ¢, toits correct class Q_ ..

m In other words, if v=«k(l) then in an ideal separating
function d (c)=1, while for v =k(/) one should
get d (c)=0.
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Multiple Equations b

m So given a collection of feature vectors ¢,, with
known class membership we can write N>M
equations for each class €2,. The equations are
equal to 1 or zero, depending on whether the
feature vector ¢, belongs to class Q, .

d,(¢)=a,c =0

d,(€)=a,c =1

d,(¢y)=a,cy =0
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Linear System of Equations A

m We can write this system of linear equations in
matrix form.

| e Cyj Cim
1 ¢y Cy; Com ;.0 0
1 ¢y Cs; Caym a; 1
3 3 ~T 7 __ =T -
=| |=Aa, =b=a, =A"Db
1 ¢ C C a 1 A 4
il ij iM A
1 C(N—l)l oo C(N—l)] oo C(N—l)M -a)L’M | -O-
1 oy o oy o Oy |

m Then we can solve for the coefficient vector a§ of a
discriminant function d,(c) using the pseudoinverse.
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Ideal Discriminant Function A

B As previously stated an ideal discriminant function
should lead to correct classification decision.

B So the ideal separating function is:

ey Ui 2=
A€ =10 it A = ic(1)

m In practice, we can not expect to get exactly zero and
exactly 1, so we use the following approximations:

(d,(¢)-1) =min if A =x()

d,(c)=- )
() (d,(¢)) =min i A=x(l)
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Ideal Discriminant Function - cont. A

B We want our polynomial separating functions to
approximate as closely as possible the ideal decision
function.

m The ideal decision function is 0 _( ) and the linear
separating function is d.( ), where§=(5,5,.....5. ,...,0,)

B So when computing the discriminant functions, the
error we want to minimize is:

e= Y ¥ (5,E)-d.@))

k=1 [=1
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Ideal Separating Function - cont. A

B The goal of a polynomial classifier is then to derive
the polynomial coefficients that minimize the
deviation from the ideal decision function:

e= Y ¥ (5,E)-d.@))

m In other words find a,; such that:

d, = argminge

ay



Minimizing € A

m Foreach q,,,i=0,1,...,M we do the following.

=)= I[=lx=I =0
Ja,
( BRI
N K €
0 D1 0@ = Ay 01 sy )| €1
I=1 k=1 .
\ _CZ,M) -0

oa .
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Minimizing € - cont A
( "1 1)
N K €y
_222 51( (El) — (aK,O ’al(,l" . ’aK,M) Cl,2 Cl,i = O
[=1 k=1 .
\ Cim )
N K
2Y N (6,(€)-d,E e, =0
[=1 k=1

m Note that this equation is linear in (a,,.a, ,...,a, )
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Solving the Minimization b

m We need to repeat this process for each aq,,,i=0,1,....M

0 We get a system of linear equations:

-222(5 (¢)-a.c")=0
[=1 k=1 -aK,O- -aK,O_

(5;< (¢)) - aKEl’T )Cl,l =0 a

K.l

|
1= ;5
N\~ 7

K.l

=~
Il
[,
A
Il
[,

(8,()=d,¢" Je,, =0

&z
N\~

~
Il
[,
A
Il
[,

_aK M ] _aK M ]

(8, (c) Q)" e,y =0

&z
N\~

~
Il
[,
A
Il
[,
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Linear Classifier and Gaussian Classifier A

m Recall that a linear classifier is equivalent to a Gaussian
classifier where the covariance matrix is independent of
the class 2.

B Given a classification problem, one can test quickly how
well a linear classifier works. If we get good results, then
we most probably have normally distributed features with
same covariances in all classes.

m We can then choose to explicitly use a Gaussian classifier,
or otherwise exploit the normal distribution of the

features.

B A similar process can be applied for quadratic separating
functions and normally distributed features with distinct
covariances among the different classes.
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Higher Order Polynomials N
m In higher order polynomials we take powers of the
components of the feature vector c.

B The general form of higher order polynomials is:
P

2\ — L 12,,, Ly
d,(c) = Eamc1 Cy e Cy

n=0
L+l +l+...+1)=n

where P is the degree of the polynomial
m For example, for P=2

d,(c) = A,,+a,,C,+a,,C,+...+a,,c, +

2 2 2
+ Cl)b’zCl + Cl)b’zCz oot aA,ZCM + CZ)L’2C1C2 + CZ)L,ZCIC3 + -
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Estimation of the Coefficients i

m Note that in the higher order polynomials, the
discriminant functions are still linear in the @, s but

—

not in the components of the vector c.

B This means that estimation of the coefficients a, ;
can be done as before.

B We want to get as closely as possible to the ideal
decision function, so we use a similar error function.

B To minimize it we take the partial derivative for
each g, ;.

m We have a system of equations from our training
data which we could solve via SVD.
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Remarks A
B When designing a polynomial classifier one needs:

1. A labeled training set

2. Decide on the degree of the polynomial

m Be careful: from polynomial approximation we know

that high order polynomials can perfectly fit the
training data, but it may lead to an overfitting
problem.

m Data Overfitting: The classifier (or more generally
the model) responds to very specific attributes of
the data (even noise) that do not generalize to the
overall population.
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Plot courtesy of A. Schmidt http://www.teco.edu/~albrecht/neuro/html/nodel10.html
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More Remarks A

B Training is equivalent more or less to solving linear
equations.

m If we do not restrict d,(¢) to a parametric family of
functions, and we use a (0,1) cost function with no
rejection class, then we will end up with.

d)L(E) = p(QA E)
m In general, because of the so-called Weierstrass

principle, polynomial classifiers are considered
universal approximations to the Bayesian classifier.




