Intuitive and Smart Editing of 3D Geometrical Heart Valve Models from Cardiac CT Data

Master Thesis Introductory Presentation

Félix Lades October 27, 2014 Computer Science Dept. 5 (Pattern Recognition) Friedrich-Alexander University Erlangen-Nuremberg

TECHNISCHE FAKULTÄI

Outline

- Motivation
- Valve Models
- 3D Model Editing

Outlook

Summarization

Motivation

Fully automatic vs. manual segmentation

- fully automatic segmentation is not always reliable
- manual segmentation can be very time-consuming

Fully automatic vs. manual segmentation

- fully automatic segmentation is not always reliable
- manual segmentation can be very time-consuming
- \Rightarrow Solution: Intuitive and Smart Post-Editing

Fully automatic vs. manual segmentation

- fully automatic segmentation is not always reliable
- manual segmentation can be very time-consuming
- \Rightarrow Solution: Intuitive and Smart Post-Editing
 - should be applied as fast as possible (\Rightarrow timesaving)
 - drag as few points as possible (\Rightarrow simpliness)
 - result should correlate with image data (\Rightarrow reliability)

Editing of Heart Valve Models

Purpose: e.g. Transcatheter Aortic Valve Implantation (TAVI)

Valve Models

Anatomy of the Mitral and Aortic Valve

3D Models of the Mitral and Aortic Valve

(mitral.u3d)

(aortic.u3d)

3D Model Editing

Trivial editing

Better approach

- fix some nodes
- remaining nodes should be deformed physically plausible

\Rightarrow As-Rigid-As-Possible Surface Modeling (Olga Sorkine, 2007)

As-Rigid-As-Possible (ARAP) Mesh Deformation

- *v_i*: original node position
- \hat{v}_i : deformed node position
- N(i): direct neighbours of v_i

As-Rigid-As-Possible (ARAP) Mesh Deformation

- *v_i*: original node position
- \hat{v}_i : deformed node position
- N(i): direct neighbours of v_i

Rigid transformation

$$\forall j \in N(i): \hat{v}_i - \hat{v}_j = \boldsymbol{R}_i(v_i - v_j)$$

As-Rigid-As-Possible (ARAP) Mesh Deformation

- *v_i*: original node position
- \hat{v}_i : deformed node position
- N(i): direct neighbours of v_i

Rigid transformation

$$\forall j \in N(i): \hat{v}_i - \hat{v}_j = \boldsymbol{R}_i(v_i - v_j)$$

Non-rigid transformation: find rotation R_i that fits best

$$\mathrm{E} = \sum_{j \in \mathcal{N}(i)} \left\| (\hat{v}_i - \hat{v}_j) - \boldsymbol{R}_i (v_i - v_j) \right\|^2 o min$$

ARAP: Objective function

$$\mathrm{E} = \sum_{i=1}^{n} \sum_{j \in \mathcal{N}(i)} \left\| (\hat{v}_i - \hat{v}_j) - \boldsymbol{R}_i (v_i - v_j) \right\|^2 \rightarrow \textit{min}$$

ARAP: Objective function

$$\mathbf{E} = \sum_{i=1}^{n} \sum_{j \in N(i)} \|(\hat{v}_i - \hat{v}_j) - \boldsymbol{R}_i(v_i - v_j)\|^2 \rightarrow min$$

Solve by iterative flip-flop optimization

- 1. fix node-positions \hat{v}_i , solve for optimal rotations R_i
- 2. fix \mathbf{R}_i , solve for \hat{v}_i

Result with 6 constraints

Outlook

Outlook

3D Editing

- leaflet editing
- deforming factor depending on geodesic distance
- nodes should snap into edges

Outlook

3D Editing

- leaflet editing
- · deforming factor depending on geodesic distance
- nodes should snap into edges

Evaluation

- performance
- · accuracy based on manually segmented data
- intra/inter variability

Intuitive and Smart Post-Editing ...

- ... is a timesaving alternative to fully manual segmentation
- ... provides a way better accuracy than fully automatic segmentation

Intuitive and Smart Post-Editing ...

- ... is a timesaving alternative to fully manual segmentation
- ... provides a way better accuracy than fully automatic segmentation

As-Rigid-As-Possible Mesh Deformation

- ... is a very nice and intuitive approach
- move some nodes (= constraints) to their correct position
- ... and the remaining nodes get deformed physically plausible

Intuitive and Smart Post-Editing ...

- ... is a timesaving alternative to fully manual segmentation
- ... provides a way better accuracy than fully automatic segmentation

As-Rigid-As-Possible Mesh Deformation

- ... is a very nice and intuitive approach
- move some nodes (= constraints) to their correct position
- ... and the remaining nodes get deformed physically plausible

Enhance the user-friendliness by involving image data (e.g. edge affinity)

Sources

 Olga Sorkine, Marc Alexa: As-Rigid-As-Possible Surface Modeling. EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, Vol. 27, 2007 Thank you for your attention!