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Background and Purpose

Diseases like glaucoma affect the visual pathway in the
brain. Diffusion Tensor Imaging enables the reconstruc-
tion of white matter fibers in vivo. For a reliable analysis
the quality of the input data is discriminant.

The purpose of our work is to develop a method to auto-
matically discriminate between different quality lev-
els of diffusion weighted images.

Key Ideas

Three feature groups capture determinant quality cri-
teria

–Clustering: Recognizability of relevant structures
–Sharpness: Separation of important components
–Texture: Generic image appearance

A Support Vector Machine classifies different quality
levels

Data

Acquisition

•3T-MRI scanner

• Imaging sequence: Single-shot, spin echo, echo pla-
nar imaging

•230 x 230 mm2 field of view

• Intra-slice-resolution: 1.8×1.8 mm2, 5mm thickness

•10 subjects scanned along 20 gradient directions

•Each scan on 1 image as 5×5 matrix (Fig. 1)

•4 scans in each direction

Four quality levels by averaging scans in each di-
rection are used

•Level 1: Original scan (No average)

•Level 2: Average of 2 scans in same direction

•Level 3: Average of 3 scans in same direction

•Level 4: Average of 4 scans in same direction

Figure 1: Example image of a diffusion weighted imaging dataset of a brain scan
(average of 4 scans). The 25 slices are aligned in a 5×5 matrix.

Methods: Clustering

The recognizability of 3 classes is investigated
1.Grey/white matter
2.Background
3.Remaining regions

→The image is divided into corresponding clusters. The
division will fail for low quality images.

Global description:
•k-means-clustering (k = 3)
• Initialization on random image points
•Clustering fails for low quality images

Features:
•Cluster sizes ci of clusters Ci:

ci =
#{gxy|gxy ∈ Ci}

{#gxy|gxy ∈ Image} (1)

• Inter-cluster-differences dij of cluster means mi:

dij = mi −mj, i, j ∈ {1, . . . , k}, i > j (2)

Methods: Sharpness

The quality of separation of relevant classes is de-
termined
→The separation is dependent on edge information.

Low quality images will show weak edges and low
sharpness.

Local measurement:
•Gradient based sharpness metric for edge evaluation
• Identification of strong edges:
1.Computation of gradient magnitude image G

2.Detection of strong edge pixel: Magnitudes above 2×
mean value of G

Features:
•Number of strong edge pixels
•Average magnitude of strong edge pixels

Methods: Texture

The image appearance is evaluated
1.Common sharpness
2. Intensity homogeneity
3.Contrast

→Texture statistics give information about the image ap-
pearance.

Texture metric:
•Haralick features
•Well established texture description method
•Statistics based on adjacent intensity pairs

Features:
•Entropy ↔ Sharpness
•Energy ↔ Homogeneity
•Contrast

Methods: Classification

•Support Vector Machine with linear kernel
•Normalized features
•10-fold-cross-validation
•Determination of quality levels independent from scan

direction

Results

The performance of assigning an image to its cor-
rect quality level was evaluated

For all quality levels:

–Minimum sensitivity of 0.96 at a specificity of 0.90
–Area under ROC curve higher than 0.97

Figure 2: ROC curves for automatically assigning images to their correct quality
levels.

Conclusion

1.We developed a reliable and robust method for au-
tomated quality assessment of different quality lev-
els of diffusion weighted images.

2. In the future the algorithm has to be evaluated on a
human graded gold standard.
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