

X-ray Phase-Contrast

Ferienakademie, 23.09. – 05.10.2018 Computational Medical Imaging Sarntal

Maximilian Kaindl

Technical University of Munich Department of Physics

[Anastasio12, Fig. 3.3]

Electromagnetic waves – a closer look

Plane wave:

- Amplitude *A*
- Wavelength λ
- Phase ϕ

Sensor measures $I \propto A^2$

Electromagnetic waves – refractive index

$$n = 1 - \delta + i\beta$$

 δ : phase shift / refraction β : attenuation / absorption

ТШП

Electromagnetic waves – wave front

$$n = 1 - \delta + i\beta$$

δ: phase shift / refraction β: attenuation / absorption

ПΠ

Electromagnetic waves – contrast

$$n = 1 - \delta + i\beta$$

- δ : phase shift / refraction
- β : attenuation / absorption

- → phase shift larger than attenuation
- → higher contrast at lower radiation dose

ТШ

Measuring the phase

"Phase problem"

Convert phase to intensity modulation:

 $\mathbf{1}$

- free-space propagation methods
- analyser-based methods
- interferometric methods

Free-space propagation methods

Free-space propagation methods

[Als-Nielsen11, Fig. 9.2]

Free-space propagation methods

Analyser based methods

[Zhou08, Fig. 4]

ТШ

Interferometric methods

Triple Laue-type interferometer

[Zhou08, Fig. 6]

[Anastasio12, Fig. 3.1]

[Als-Nielsen11, Fig. 9.16]

[Anastasio12, Fig. 3.1]

[Anastasio12, Fig. 3.1]

Grating based interferometry - Talbot effect

Grating based interferometry - measurement

Optimize propagation distances and grating periods

- for visibility
- for resolution

 $\rightarrow \pi$ -phase grating and high fractional Talbot order

[Gromann16, Fig. 1]

Grating based interferometry - signal retrieval

Grating based interferometry - signal retrieval

ТШП

Differentiate by attenuation and refraction:

Attenuation coefficient μ [cm^{-1}]

Multimodal imaging

CT of different fluids:

Multimodal imaging

absorption signal: position of highly dense materials

- → iterative reconstruction with weighted pixels
- → reduced stripe artifacts and noise

absorption

phase (FBP)

phase (iterative reconstruction)

[Eggl06, Fig. 3]

ТШ

Requirement: Coherence

ТШП

Synchrotron

Accelerate charged particle

 \rightarrow wave emission

Problem:

high energies, huge facilities

European Synchrotron Radiation Facility [www.esrf.eu]

Compact synchrotron light source (CLS)

- Laser driven
- Generates X-rays by inverse Compton effect

[Eggl06, Fig. 5]

ПΠ

Source grating

- Additional source grating with specific spacing
- Allows application of conventional X-ray tubes

[Pfeiffer06, Fig. 1a]

ТШ

Results

- Atherosclerotic Plaque CT:

- Mammography:

[Anastasio12]

Discussion

Literature

[Eggl06]	E. Eggl et al., <i>PNAS</i> 112(18), 5567-5572 (2015)
[Pfeiffer06]	F. Pfeiffer et al., <i>Nat. Phys.</i> 2, 258-261 (2006)
[Zhou08]	S.A. Zhou and A. Brahme, <i>Phys. Med.</i> 24, 129-148 (2008)
[Willmott11]	P. Willmott, An introduction to Synchrotron Radiation, Wiley (2011)
[Als-Nielsen11]	J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics, Wiley (2011)
[Anastasio12]	M.A. Anastasio and P.L. Riviere, Emerging Imaging Tech. in Medicine, CRC Press Inc (2012)
[Saam13]	T. Saam, PLOS ONE 8(9), e73513 (2013)
[Gromann16]	L. Gromann et al., Biomed. Opt. Express 7(2), 381-391 (2016)

Backup

Literature

[Eggl06]	E. Eggl et al., <i>PNAS</i> 112(18), 5567-5572 (2015)
[Pfeiffer06]	F. Pfeiffer et al., <i>Nat. Phys.</i> 2, 258-261 (2006)
[Zhou08]	S.A. Zhou and A. Brahme <i>, Phys. Med.</i> 24, 129-148 (2008)
[Willmott11]	P. Willmott, An introduction to Synchrotron Radiation, Wiley (2011)
[Als-Nielsen11]	J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics, Wiley (2011)
[Anastasio12]	M.A. Anastasio and P.L. Riviere, Emerging Imaging Tech. in Medicine, CRC Press Inc (2012)
[Saam13]	T. Saam, PLOS ONE 8(9), e73513 (2013)
[Gromann16]	L. Gromann et al., Biomed. Opt. Express 7(2), 381-391 (2016)

ТШП

Coherent diffraction imaging (CDI)

[Als-Nielsen11, Fig. 9.2]

CDI - Iterative Hybrid input output (HIO) algorithm

Ptychographical Iterative Engine (PIE):

Self-consistent reconstruction from multiple diffraction patterns