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Pattern Recognition Pipeline 

  Heuristic feature extraction methods 

  Analytic feature extraction methods 
  Principal Component Analysis (PCA) 

  Minimal Intra-class Distance 

  Maximal Inter-class Distance 

  Linear Discriminant Analysis (LDA) 

  Optimal Feature Transform 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ

Learning Training samples 
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Analytic Methods for Feature Computation 

  Analytic feature extraction methods derive a linear 
transformation      that satisfies a specific optimality 
criterion. 

  So far we have seen optimality criteria that are 
related to the postulates of pattern recognition: 
  Finding principal components that can explain the variability of 

the data. 

  Tight clusters for each class. 

  Distinct clusters for different classes. 

  What about an optimality criterion that is directly 
related to the goal of pattern recognition itself: 
Good recognition (classification) rates 
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Optimal Feature Transform 

  There exists an analytic feature extraction method 
whose goal is to minimize the number of 
misclassifications.  

  Alternatively one can think of the dual problem 
which is maximizing the number of correct 
classifications. 

  The resulting features are then optimal for the 
overall goal of pattern recognition. 

  Thus, such a feature extraction method is called an 
Optimal Feature Transform (OFT). 
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Optimality Criterion of OFT 

  The goal of OFT is to derive a transformation matrix 

Φ that minimizes misclassifications. 

  Expressing this goal mathematically requires us to 
precisely define misclassification. 

  This implies that we have to set up the basics for 
describing classification itself. 

  It is a long derivation, so keep in mind that at the 
end we want to derive an optimization function 

 that describes misclassifications. 
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Gaussian Distributed Features 

  We can not design a feature transform that will be 
optimal for any possible input signal. 

  Rather we design optimal feature transformations for 
particular cases. 

  So, let's look at one such particular case. 

  Special case: Features are normally distributed, i.e.  
the probability density function of      is a Gaussian 

 where N is a Gaussian distribution with amplitude     , 
mean       and variance     .   
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Different Decision Regions 

c1 

c2 

µ1 

µ2 Feature space 
region where 
classification 
decision is 
straightforward  
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The shape of the 
yellow region is 
controlled by  
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Distance Function 

  Consider a function u() which is a measure of how far 
a point in feature space is from the center of a cluster.  
  u1() is a distance measure to the center of cluster 1. 
  u2() is a distance measure to the center of cluster 2. 

  If for a specific feature vector     ,                     then 
we classify      as belonging to class  Ω1. 
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Decision Boundary 

  There is a region, where it is ambiguous whether 
the data belongs to class 1, Ω1, or class 2, Ω2. 

  This region is called the decision boundary. 
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  It is the area where u1()= u2(). 
  It is the where we are most probable to have 

misclassifications for both classes. 
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OFT and Decision Boundary 

  Recall that the goal of OFT is to derive a transformation 

matrix Φ that minimizes misclassifications. 

  We also know that the misclassifications will most 
probably occur at the decision boundary (u1()= u2()). 

  So we have to focus our derivation of the optimization 
function for the computation of Φ  on the decision 
boundary and the distance functions. 

  Assuming that the feature vectors within each class are 
normally distributed, an appropriate distance function 
is:  
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Decision Boundary Manifold 

  The decision boundaries are the manifolds where the 
points belonging to them are equidistant to different 
class centers: 

 where        is the decision boundary between classes 
Ωκ and Ωλ. 

  What does the shape of        look like? 
  Straight line? 
  Section of a Circle? 
  Section of an Ellipse? 
  … 

  To answer that we must look at the distance function. 
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Shape of the Decision Boundary 

  At the decision boundary  

  Using the Mahalanobis distance metric 

 where      and      are constants for each class Ωi. 
  This equation shows that, for classes whose features 

follow a Gaussian distribution,       is quadratic in the 
components of the vector    . 

  This means that in a 2D feature space         will look 
like a parabola. 
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  Consider the case where all the feature vectors that 
belong to class Ωκ are equidistant from the mean 
value of that class,    : 

 where α is a constant.  

  Plot such a distribution. 
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On the Mahalanobis Distance 

  If         is the Euclidean distance, then we get a 

circle of radius α which is centered around    . 

  Looking at the definition of the Mahalanobis 
distance,                                      , we get a circle 
only when the variance matrix is the identity          .  
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  In general case the (co-)variance matrix is not the 
identity matrix I,          . 

  In 2D think of a Gaussian with independent standard 
deviations in each of the two axes,            . What 
one gets is an oblong 3D bell shape. 

  If we consider a set of feature points     that are 
equidistant to the class mean     , i.e.                For 
this general case, we get an ellipsoid. 

  Thus       is an ellipsoid. 
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On the Mahalanobis Distance – cont. 
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Ellipsoids and Classification 

  There is an ellipsoid in class Ωκ that just touches the 
decision boundary      . There is an ellipsoid in class 

Ωλ that just touches the decision boundary       .   
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This “touching” 
ellipsoid gives 
a classification 
guarantee.  
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Ellipsoids and Classification - continued 

  Consider the maximal ellipsoid for class Ωκ that is 

still completely lies on the Ωκ side of the decision 
boundary       . 

  For all the points inside that ellipsoid                    . 

  So as long as we stay within the ellipsoid, there is 
no ambiguity about our classification decision, there 
is no misclassification. 
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OFT and Ellipsoids 

  The goal of OFT is to derive a transformation matrix 

Φ that minimizes misclassifications. 

  Find a Φ that transforms the input signal     to a 
feature vector      so that the radius of the “touching” 
ellipsoid is maximal. 

  In that way we will have the largest possible region 
in the feature space where we will be getting correct 
classifications. 

  Still missing: A mathematical definition of the 
touching ellipsoid. 

  Keep in mind that there may be more than 2 classes. 
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Guarantee Ellipsoid and Decision Boundary 

  Let       be the minimum distance of a feature vector         
on the decision boundary,             , to the mean value 
of class      : 

  In other words, We walk on the decision boundary. We 
compute           for each point on the decision 
boundary        . For one such point          will be 
minimal. This “minimal” point is where the 
“guarantee” ellipse of class       touches the boundary. 

  We can have more than 2 classes. So we get a 
decision boundary        for every pair of classes       
and     . For each        we get a      . 
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Multiclass Decision Boundaries 
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Using the Guarantee Ellipsoids 

  As long as we are inside a “guarantee” ellipse, we 
have ideally no misclassifications. 

  In a multiclass setup, we will possibly end up with 
intersecting ellipses.  

  In order to preserve the “no misclassification 
property” of the guarantee ellipse, we must avoid 
intersections that result from the different decision 
boundaries. 

  Thus, we must be conservative. For each particular 
class      we must  examine each decision boundary        
with that class,                       , and pick the ellipse 
that is closest to the mean of the cluster.  
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Using the Guarantee Ellipsoids - continued 

  For each particular class      we must  examine each 
decision boundary with that class,                       , 
and pick the ellipse that is closest to the mean of the 
cluster.  

  We can use the minimal distance to find such an 
ellipse: 

  A pattern will be correctly classified if the feature 
vector     lies inside the ellipsoid with radius       . 

  For each class       we get a radius that ensures 
correct separation of the classes       and      . To be 
able to separate all classes, we take the smallest 
radius among all classes       .  

€ 

Ωκ

  

€ 

Hκα ,Hκβ ,Hκγ ,…

€ 

uκ m
=min

κ ≠λ
uκλ

  

€ 

 c 

€ 

uκ m

€ 

Ωκ

€ 

Ωκ

€ 

Ωλ

€ 

Ωλ



 Seite 22 

Page 22 

Probability of Misclassification 

  What happens outside the ellipse? 

  There may still be points outside the conservative 
ellipse that belong to class       but get mistakenly 
classified as belonging to another class. 

  What is the probability of my making this mistake? 

  So for the overall error probability, for all the 
classes is the sum weighted by the probability of the 
class occurring: 
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Probability of Misclassification- continued 

  So for the overall error probability, for all the 
classes is the sum weighted by the probability of the 
class occurring: 

  Use Chebyshev’s inequality:  

  The objective function for the OPT becomes: 
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Linear Transformations in Feature Space 

  What happens if we apply a linear transformation to 
the feature vector    ? 

  Consider for example the case, where     is related to   
vector      by an invertible linear transformation B: 

  Are the mean values of vectors      and     related? 
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  So the new expected value is just the original expected 
value transformed by B. 
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Linear Transformations in Feature Space 2 

  Are the covariances of vectors      and     related? 
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  The covariance of the linearly transformed vector is 
linearly related to the covariance of the original vector. 
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Invariance of the Mahalanobis Distance 

  How is the Mahalanobis distance of the transformed 
vector     affected?   
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  Conclusion: The Mahalanobis distance metric         is 
independent of regular (aka invertible) linear 
transformations. 
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Impact of the Mahalanobis Invariance 

  Can we use this invariance property to simplify the 
optimization problem of computing the transformation 
matrix for the Optimal Feature Transform?  

                  with MN unknowns. 

  Can we reduce the MN search space for an optimal 
solution by using the invariance property of        ? 

  Recall that:  

  What happens when we apply to the feature vector         
a regular linear transformation? 
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Impact of the Mahalanobis Invariance – cont 

  When we apply a regular linear transformation B to    :  

  Due to the invariance of the Mahalanobis distance to 
regular linear transformations,      has the same           
and therefore the same optimal solution to         .  

  Thus,       is also an optimal feature transformation 
matrix. 

  Can we select a regular linear transformation B so that 
deriving the elements of the transformation matrix       
involves a smaller search space?  
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Impact of the Mahalanobis Invariance – cont 

  B must be an MxM invertible matrix. 

  Let us choose a B so that      has the following form: 

 where       is multiplied to the left with an MxM 
identity matrix. 

  Why should       have this form?  
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  Because the search space is reduced from MN 

dimensions to MN-M2. 
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Remarks on Computing Φ

  We reduced the search space, but we still have to 
estimate      . 

  Deriving the elements of      is not trivial. 

  Keep trying to simplify the problem as much as 
possible. 

  For example, we saw how one can exploit the 
invariance of          to invertible linear 
transformations in order to reduce the very large 
search space. 
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