Artificial Neural Networks

Radial Basis Function Networks

Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Pattern Recognition Pipeline

■ Classification

- Statistical classifiers
- Bayesian classifier
- Gaussian classifier
- Polynomial classifiers
- Non-Parametric classifiers
- k-Nearest-Neighbor density estimation
- Parzen windows
- Artificial neural networks

Artificial Neural Network (ANN)

- There is no precise agreed definition among researchers as to what is an artificial neural network.
- Most would agree that it involves a network of simple processing elements (neurons), which can exhibit complex global behavior, determined by
- the connections between the processing elements and
- the element parameters.
- In a neural network model, simple nodes (neurons, or processing elements or units) are connected together to form a network of nodes.

ANN Operation

- In general an ANN operates as a function $f: x \rightarrow y$.
- The "network" arises because the function $f(x)$ is defined as a composition of other functions $g_{i}(x)$, which can further be defined as a composition of other functions, e.g. $h_{j}(x)$.

General Form of ANN

■ There is great variation in ANNs, depending on:

- The number of layers
- Whether there are hidden layers or not
- The connectivity (We could have feedback loops.)
- The adaptability

■ An ANN does not have to be adaptive. In practice, part of their strength comes from adapting, changing the weights of the connections in order to produce a desired signal flow.

Mathematical Description of an ANN

- A widely used type of composition is the nonlinear weighted sum:

$$
f(x)=\phi\left(\sum_{i} w_{i} g_{i}(x)\right)
$$

where ϕ is a predefined function that forces the output of a neuron to be in a certain range, typically $[0,1]$ or $[-1,1]$.

- ϕ is often referred to as an activation function.

Activation Function

- An activation function tries to mimic the firing of the neuron if the incoming signal is sufficiently strong.
- Mathematically, this is usually achieved with a sigmoid function, e.g.:

$$
\phi(t)=\frac{1}{1+e^{-t}}
$$

- Sigmoid functions have the following characteristic properties:
- They are differentiable
- They have 1 inflection point
- They have a pair of horizontal asymptotes
- Another typical sigmoid function employed in ANNs is the hyperbolic tangent, $\phi(t)=\tanh (t)$.

ANN and Classification

- The ANNs that we will examine are used in computing discriminant functions.
- Recall that, a discriminant function for class Ω_{k} is a polynomial that evaluates to 1 if the feature vector belongs to that class. Otherwise it evaluates to zero.

$$
d_{\kappa}(\vec{c})= \begin{cases}1 & \text { if } \vec{c} \in \Omega_{\kappa} \\ 0 & \text { otherwise }\end{cases}
$$

- The input of such an ANN is a feature vector \vec{c} and the output is a discriminant vector, $\vec{d}=\left(d_{1}, d_{2}, \ldots, d_{K}\right)$.

Radial Basis Function ANNs

■ Radial Basis Function (RBF) networks use Radial Basis
Functions as their activation function.
■ An RBF network is a feed-forward 3 layer network:

- input layer, \vec{c} in our case
- a hidden layer, where each node ϕ_{i} is a separate RBF
- an output layer, which is a weighted sum of the hidden layers.

Radial Basis Functions

- Radial basis functions were first used in 1987 by Powell.
- He introduced RBFs as a means of mapping an input vector to an output vector.
- A radial basis function (RBF) is a real-valued function whose value depends only on the distance from the origin, so that

$$
\phi(\vec{x})=\phi(\|\vec{x}\|)
$$

- Alternatively, the RBF can be based on the distance from some other point \vec{q}, called a center:

$$
\phi(\vec{x}, \vec{q})=\phi(\|\vec{x}-\vec{q}\|)
$$

Radial Basis Functions - continued

- So RBFs are a type of distance function.
- As a distance function, RBFs have the key characteristic that response decreases monotonically with distance from a central point.
- Its response radially decreases.

Different RBFs

- Any distance function that decreases radially can be considered a radial basis function. Some commonly used RBFs are:

■ Two different forms of Gaussians:

$$
\phi(\|\vec{x}-\vec{q}\|)=e^{-\frac{(\|\vec{x}-\vec{q}\|)^{2}}{\sigma^{2}}} \quad \phi(\|\vec{x}-\vec{q}\|)=\frac{1}{\sqrt{2 \pi \Sigma}} e^{-\frac{1}{2}(\|\vec{x}-\vec{q}\|)^{T} \Sigma^{-1}(\|\vec{x}-\vec{q}\|)}
$$

- Multiquadric:

$$
\phi(\|\vec{x}-\vec{q}\|)=\sqrt{r^{2}+\|\vec{x}-\vec{q}\|^{2}} / r^{2}
$$

■ Spline (a.k.a Logarithmic):

$$
\phi(\|\vec{x}-\vec{q}\|)=\|\vec{x}-\vec{q}\|^{2} \log (\|\vec{x}-\vec{q}\|)
$$

RBF and Classification

- Within the context of classification, RBFs work as follows.
- We are given a set of N training samples $\vec{c}_{1}, \vec{c}_{2}, \ldots, \vec{c}_{N}$ and we want to find the best discriminant functions.
- One radial basis function (RBF) approach is to use a set of N basis functions, each centered around one of the training samples, i.e. $\vec{q}_{i}=\vec{c}_{i}$.
- Given a new feature vector \vec{c} we use RBFs to compute how far away it is from each of the training samples.

$$
\phi\left(\vec{c}-\vec{c}_{i}\right)=\phi_{i}(\vec{c})
$$

RBF and Classification - continued

- The discriminant function is then treated as a linear combination of these radial basis functions.

$$
d_{\kappa}(\vec{c})=\sum_{i=1}^{N} w_{i} \phi\left(\left\|\vec{c}-\vec{c}_{i}\right\|\right)=\sum_{i=1}^{N} w_{i} \phi_{i}(\vec{c})
$$

- In this type of RBFs training corresponds to the estimation of the weights w_{i} from the training data.
- In more detail, recall that each $d_{\kappa}(\vec{c})$ is a binary function. Thus the training set has the form:

$$
T=\left\{\left(\vec{c}_{l}, d_{\kappa(l)}\left(\vec{c}_{l}\right)\right), l=1,2, \ldots, N\right\}
$$

where $d_{k(l)}(\vec{c})$ is the discriminant function of the class $\Omega_{\mathrm{k}(1)}$ to which the sample \vec{c}_{l} belongs.

RBFN Training

- So for each training pair $\left(\vec{c}_{l}, d_{\kappa(l)}\left(\vec{c}_{l}\right)\right)$ we have:

$$
d_{\kappa(l)}\left(\vec{c}_{l}\right)=\sum_{i=1}^{N} w_{i} \phi\left(\left\|\vec{c}_{l}-\vec{c}_{i}\right\|\right)
$$

- This can be written as a vector product:

$$
\begin{gathered}
d_{\kappa(l)}\left(\vec{c}_{l}\right)=\left(w_{1}, w_{2}, \ldots, w_{N}\right)\left[\begin{array}{c}
\phi\left(\left\|\vec{c}_{l}-\vec{c}_{1}\right\|\right) \\
\phi\left(\left\|\vec{c}_{l}-\vec{c}_{2}\right\|\right) \\
\vdots \\
\phi\left(\left\|\vec{c}_{l}-\vec{c}_{N}\right\|\right)
\end{array}\right] \\
d_{\kappa(l)}\left(\vec{c}_{l}\right)=\left(\phi\left(\left\|\vec{c}_{l}-\vec{c}_{1}\right\|\right), \phi\left(\left\|\vec{c}_{l}-\vec{c}_{2}\right\|\right), \ldots, \phi\left(\left\|\vec{c}_{l}-\vec{c}_{N}\right\|\right)\right)\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{N}
\end{array}\right]
\end{gathered}
$$

RBFN Training - continued

- Since there are N samples in my training set, I have N such equations.

$$
\begin{gathered}
d_{\kappa(1)}\left(\vec{c}_{1}\right)=\left(\phi\left(\left\|\vec{c}_{1}-\vec{c}_{1}\right\|\right), \phi\left(\left\|\vec{c}_{1}-\vec{c}_{2}\right\|\right), \ldots, \phi\left(\left\|\vec{c}_{1}-\vec{c}_{N}\right\|\right)\right) \vec{w} \\
d_{\kappa(2)}\left(\vec{c}_{2}\right)=\left(\phi\left(\left\|\vec{c}_{2}-\vec{c}_{1}\right\|\right), \phi\left(\left\|\vec{c}_{2}-\vec{c}_{2}\right\|\right), \ldots, \phi\left(\left\|\vec{c}_{2}-\vec{c}_{N}\right\|\right)\right) \vec{w} \\
\vdots \\
d_{\kappa(N)}\left(\vec{c}_{N}\right)=\left(\phi\left(\left\|\vec{c}_{N}-\vec{c}_{1}\right\|\right), \phi\left(\left\|\vec{c}_{N}-\vec{c}_{2}\right\|\right), \ldots, \phi\left(\left\|\vec{c}_{N}-\vec{c}_{N}\right\|\right)\right) \vec{w}
\end{gathered}
$$

which can be written more compactly as:

$$
\begin{aligned}
\vec{d}^{\prime} & =\Phi \vec{w} \\
\Rightarrow \vec{w} & =\Phi^{+} \vec{d}^{\prime}
\end{aligned}
$$

Important Comment on RBFN Training

- If we have many feature vectors in our training data and we have an RBF estimate for each individual training sample we end up with too many RBFs, too many nodes => Slow training and Overfitting!!
- Solution: Use centers of clusters of feature vectors for the RBFs, instead of the individual feature vectors.
- Each RBF is now centered around $\vec{\mu}_{j}, j=1,2, \ldots, s$ instead of $\vec{c}_{i}, i=1,2, \ldots, N$:

$$
\phi\left(\vec{c}-\vec{\mu}_{j}\right)=\phi_{j}(\vec{c})
$$

Updated Training of RBFNs

- 2-stage process:

1. Unsupervised selection of RBF centers $\vec{\mu}_{j}$

K-means:
pick $s \quad \vec{\mu}_{j}$ values at random.
Assign each training sample to its nearest $\vec{\mu}_{j}$.
Recompute $\vec{\mu}_{j}$ as the mean value of the samples of cluster j.
Repeat this process until the $\vec{\mu}_{j} s$ are stabilized. If using a Gaussian RBF, use MLE to compute Σ_{j}
2. The estimation of \vec{w} can be done as before via linear algebra methods (e.g. SVD)

Weaknesses of the 2-stage Approach

- The estimation of $\vec{\mu}_{j}$ and Σ_{j} is not guided by the discriminant function that is used to compute \vec{w}.
■ Hence we have a non-symmetric approach.
- Stage 2 relies on the results of Stage 1.

■ Thus, we have a propagation of estimation errors which often means an amplification of errors.

- Better solution: use an integrated, fully supervised approach like the Orthogonal Least Squares approach.

RBFN Training via Orthogonal Least Squares

- Main idea of OLS: Do not cluster as a preprocessing step.
- Rather do a sequential selection of the centers $\vec{\mu}_{j}$ which leads to the largest reduction in the sum of squared errors.
- Which sum of squared error (SSD)?
- The difference between the computed and the expected result (value) of the discriminant functions:

$$
S S D=\sum_{i=1}^{N}\left(\hat{\vec{d}}_{i}-\vec{d}_{i}\right)
$$

Orthogonal Least Squares Algorithm

1. Start with N pairs $\left(\vec{c}_{l}, d_{\kappa(l)}\left(\vec{c}_{l}\right)\right)$ and $s=0$
2. For each training pair i of the $\mathrm{n}=\mathrm{N}-\mathrm{s}$ features vectors 2a. Add the current feature \vec{c}_{i} to the s centers The new vector becomes an additional $\vec{\mu}_{j}$ 2b. Compute the weights \vec{w}

Use linear algebra as previously described.
2c. Compute the sum of squared differences, SSD.
3. Out of the n pairs, add the feature vector with the smallest SSD to s.
4. s++;

Repeat until all the desired \# of clusters is reached.

References

1. The sigmoid function plot is courtesy of Wikipedia http://en.wikipedia.org/wiki/File:Logistic-curve.svg
2. The RBF graph is courtesy of P. Sherrod http://www.dtreq.com/rbf.htm
