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Pattern Recognition Pipeline 

  Feature Extraction 
  Heuristic feature extraction methods 

  Analytic feature extraction methods 

  Feature Selection 
  Objective function for “goodness” of feature vector 

  Search method for exploring the feature space  

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ

Learning Training samples 
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Decision Function 

  Goal: Map the computed feature vector     to a class 

Ωκ. 

  The decision function δ() can be a probabilistic 
decision function.  

  Given a feature vector    , there is a certain 
probability that we will decide that the observed 
signal belongs to a particular class. 

  A probabilistic decision function expresses the fact 
that there is uncertainty in our decision making 
process. 
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Decision Function - continued 

  Other times, the decision function is a binary 
function of the form: 

  In these cases the decision function can also be 
represented by a binary vector, with all zeroes, 
except the class to which the vector     belongs to.    
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Common Assumptions 

  Very often during classification we make the 
following assumptions: 

1.  There exists a rejection class Ω0. 

2.  Each classification decision has individual costs 
associated with it.  It is the cost of making a 
mistake. 

3.  After having classified a large number of samples,  
we are able to estimate the average costs/risk. 
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Statistical Classifiers 

  We have briefly seen classifiers that base their 
decision based on distances from a representative 
sample of each class (i.e. mean), or on decision 
boundaries. 

  Statistical classifiers are based on the following idea: 

1.  Compute the risk associated with the classification of 
pattern. 

2.  Compute the decision rule by minimizing the total 
risk. 

  The final decision rule (that minimizes the risk) leads 
to the optimal classifier. 
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Statistics Review 
  Mean vector (expectation): 

  Continuous: 

  Discrete: 

  Variance of scalar random variable 

  Continuous: 

  Discrete: 

  Variance of vector data (a.k.a. covariance matrix, or 
variance-covariance matrix, or dispersion matrix. 
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Parametric Densities 

  Parametric density functions are densities that are 
completely defined by their parameters. 

  For example, in a normal distribution, the pdf is 
completely described by the mean and the variance. 

  In general, parametric density functions are of the 
form: 

 where     is a parameter vector that has to be 
estimated.  

  Example: Normally distributed feature vectors 

 where the parameters        can be estimated via 
maximum likelihood estimation.  
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Classification Risk – a first look 

  Recall that statistical classifiers are based on the 
following 2-step process: 

1.  Compute the risk associated with the classification 
of pattern. 

2.  Compute the decision rule by minimizing the total 
risk. 

  We need a way of quantifying the risk associated 
with a classifier.  

  For that we need to first establish a cost for each 
classification decision. 
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Cost Function 

  Let              denote the cost for classifying a 

pattern as belonging to class Ωλ when it truly 

belongs to class Ωκ. 

  The individual decision cost        has to be 
defined by the user of the classifier. 

  A cost function (usually) should fulfill the following 
inequality: 

 where        is the correct decision. 

  In the presence of a rejection class Ω0:  
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Computing the Optimal Decision Rule 

  In order to compute the optimal decision rule we 
need to perform  the following steps: 
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p Ωλ Ωκ( )
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R(δ) = p(Ωκ )
∀κ ,λ
∑ p Ωλ Ωκ( )rλ,κ

€ 

ˆ δ = argmin
δ

R(δ)

1.  Compute the probability of misclassification 

2.  Compute the risk R(δ) associated with using a 

particular decision function δ(), including 
correct decisions, as well as misclassifications: 

3.  Minimize the risk over all different decision rules 
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Computing the Prob. of Misclassification 

  We want to computing the probability of misclassifying 

a signal as belonging to class Ωλ when it truly belongs 

to class Ωκ,               . 

  By the definition of conditional probabilities: 

  Given two jointly distributed random variables A and B, 
the marginal distribution of A is simply the probability 
distribution of A ignoring information about B. It is 
typically calculated by integrating the joint probability 
distribution over B: 
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Computing the Prob. of Misclassification (2) 

  Given these facts, one can derive the probability of 
misclassification by starting with the conditional 
probability and doing a marginalization over    .   
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Computing the Prob. of Misclassification (3) 

  We have shown that 

  However what we observe is just the feature vector     
and not both     and Ωκ.  

  So we replace this term with a probabilistic decision 
for class Ωκ, given that we have observed   : 

  We can now do a marginalization over    :     
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Computing the Optimal Decision Rule - revisit 

  In order to compute the optimal decision rule we 
need to perform  the following steps: 
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R(δ) = p(Ωκ )
∀κ ,λ
∑ p Ωλ Ωκ( )rλ,κ
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ˆ δ = argmin
δ

R(δ)

1.  Compute the probability of misclassification 

2.  Compute the risk R(δ) associated with using a 

particular decision function δ(), including 
correct decisions, as well as misclassifications: 

3.  Minimize the risk over all different decision rules 
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Computing the Risk of a Decision Function 

  The risk R(δ) associated with using a particular 

decision function δ() for a specific class Ωκ is:  

  For the overall risk, we have to sum over all the 
classes, taking under consideration the probability 
of occurrence of each class. 
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Objective Function 

  The overall risk R(δ) can then be written more 
compactly as: 

  Goal: Derive an optimal decision rule which 
minimizes overall risk: 

  Conclusion: The optimal classifier will decide for the 
class that leads to the smallest measurement 
value         . 
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Optimal Decision Rule 

  Let            be the smallest possible measurement 
value among all possible classes. 

  Then, the optimal decision rule is: 
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A Remark on the Measurement Value 

  The computation of          can be done by a vector 
product calculation: 
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Cost Functions 

  So far we have considered the user-defined cost 
function       , where                     and               
and where K is the number of classes. So the user 
must specify (K+1)K different cost values. 

  A simpler cost setup involves just 3 distinct cost 
functions: 

  So one can also think of the total cost of a decision 
function as:  
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(0,1)-Cost Function 

  A special case of cost function is the (0,1)-cost 
function which: 
  uses no rejection class  
  has an                            correct decision cost 
  has an                                  false decision cost 

  The risk function for the (0,1) cost function is a 

simplified version of the general R(δ): 

  Thus, a classifier that minimizes the risk for a (0,1)-
cost function is equivalent to the classifier that 
minimizes the error probability.  
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Decision rule of a (0,1)-Cost Function 

  Using a (0,1)-cost function simplifies the measurement 
value: 

  Recall that the optimal decision rule is:  

  Notice that            is minimal when the largest 
summand is left out, i.e. when the class Ωκ with the 
largest                      product is not included in the 
summation. 
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  More specifically, minimizing          for a (0,1)-cost 
function involves: 

  But the sum is minimal when the largest summand 
is left out. The largest term of the sum is realized 
for the class with the largest                      term. 

  How can we exclude this from the sum?  

Measurement Value of a (0,1)-Cost Function 
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  Assign     to the class with the largest                    
term. Then through the           condition the term is 
excluded from the sum. 
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  The measurement value then becomes: 

Measurement Value of a (0,1)-Cost Function 
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of the maximizing argument λ

Using the Bayesian rule a-posteriori 
probability 
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Optimal Decision Rule Revisited 

  So, given a feature vector     we compute for each 
class the a-posteriori probability and decide for the 
class with the largest probability. 

  Lemma: The classifier that minimizes the probability 
for misclassification (minimizes pf) applies the 
following decision rule: 
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Bayesian Decision Rule 

  The Bayes decision rule is a very important result in 
pattern recognition. 

  It states that if we want to have a classification 
scheme that minimizes the probability of 
misclassifications, then the only thing one needs to 
do is to: 
a.  Compute the posterior probabilities 
b.  Decide for the class that give the maximum posterior 

probability. 

  Simple concept: 

 Finding the optimal classifier requires finding the 
posterior probabilities. 
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Bayesian Classifier 

  Definition: A classifier whose decision rule is based 
on the maximization of posterior probabilities is 
called a Bayesian classifier. 

  So pattern recognition is then done/solved in term 
of classification.  

  All we need to do is given some training data to 
compute the posterior probability            . 

  A simple task. Or is it?  
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Bayesian Classifier 

  Obtaining accurate estimates of the posterior 
probabilities from training data can be challenging. 

  One of the topics of Pattern Recognition is to find 
good methodologies for approximating the posterior 
probabilities. 

  So in theory, there is no other classifier that can 
achieve a lower error probability than a (0,1)-
Bayesian classifier. Let us denote the error probability 
of a Bayesian classifier as pB. 

  In general, this error probability pB will act as a lower 
bound when discussing the error probabilities of other 
classifiers.  
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Remarks 

1.  Many classifiers try to approximate the Bayesian 
classifier. 

 Caution: a (0,1)-cost function must make sense, do 
not force a (0,1)-cost function if it doesn't fit the 
application. 

2.  The Bayesian classifier requires complete knowledge 
about            . 

  How do we get enough training data? 

 Is the training data appropriate? In other words are 
our samples good examples of the real population? 
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Remarks - continued 

3.  Modeling of              is a key issue. 

 For instance:  

 In speech recognition we don't classify based on a 
single feature but rather on a sequence of features. 
How do we handle feature sequences in the posterior 
probability computation?  

 How do we deal with the fact that the image data we 
get is a projection from 3D to 2D, so we already 
have information loss? 
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