
Dr. Elli Angelopoulou
Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Artificial Neural Networks
Multilayer Perceptron

 Seite 2

Page 2

Pattern Recognition Pipeline

  Classification
  Statistical classifiers

  Bayesian classifier
  Gaussian classifier

  Polynomial classifiers
  Non-Parametric classifiers

  k-Nearest-Neighbor density estimation
  Parzen windows
  Artificial neural networks

  Radial basis function networks
  Multilayer perceptron

A/D Pre-processing
Feature Extraction
and Selection Classification f’ f h c Ωκ

Learning Training samples

 Seite 3

Page 3

General ANN Layout and Operation

  In general an ANN operates as a function .

  There can be multiple layers, some of which may be
hidden.

  A widely used form of composition is:

  is often referred to as an activation function.

€

f : x→ y

€

h1

€

h2

€

h3€

g1

€

g2

€

f

€

y

€

x

€

f (x) = φ wigi(x)
i
∑

€

φ

 Seite 4

Page 4

Multilayer Perceptron (MLP)

  A multilayer perceptron is another widely used type of
Artificial Neural Network.

  It is a feed forward network (i.e. connections between
processing elements do not form any directed cycles,
it has a tree structure) of simple processing elements
which simply perform a kind of thresholding operation.

  In a single layer perceptron (the earliest type of ANN)
the inputs are fed directly to the outputs, i.e. only two
layers in total.

  MLPs have at least one hidden layer.

  This enables them to solve linearly non-separable
problems.

 Seite 5

Page 5

Different ANN Layouts

MLP

 Seite 6

Page 6

Perceptron

  The term perceptron refers to the type of processing
performed at the nodes of a MLP ANN.

  A perceptron is a processing element, a neuron of
an ANN, which performs the following operation:

 If the sum of the weighted inputs to the node are
above some threshold value then the neuron fires
and takes the activated value (typically 1),
otherwise it gives the deactivated value (typically -1
or 0).

  This type of neurons are also known as McCulloch-
Pitts neurons or threshold neurons.

 Seite 7

Page 7

Schematic Representation of an MLP

  Unlike the RBFN where each neuron computes a
radial basis function, in MLPs the key functionality
lies in the treatment of the input and output of each
node.

€

x1

€

x2

€

xi €

h2
<1>

€

h j
<1>

€

€

€

h1
<1>

€

€

wij
<1>

€

w jk
<2>

€

net j
<1>

€

y j
<1>

€

f1
<2>

€

f2
<2>

€

fk
<2>

€

y2
<2>

€

y1
<2>

€

yk
<2>

 Seite 8

Page 8

MLP Variables

  Let us define the following variables:

€

xn : the nth input to the network

€

w jk
< i> : the weight connecting the output of the jth node

 at layer i-1 to the input of the kth node at layer i

€

net j
< i> : the combination (or processing) of the inputs at

 the jth node at layer i

€

y j
< i> : the output of the jth node at layer i

€

dk : the desired output of the kth output neuron

 Seite 9

Page 9

An MLP Node – a Perceptron

  Each node k at layer i has:

1.  as input a weighted sum of the outputs
of all the previous layer nodes

2.  an output which is a sigmoid function of the
input.

€

hk
< i>

€

y1
< i−1>

€

y2
< i−1>

€

ym
< i−1>

€

yk
< i>

€

netk
< i>

€

ym
< i−1>

€

∀m ∈< i −1>

€

yk
< i>

 Seite 10

Page 10

Perceptron and Biology

  The functionality of a perceptron can be directly
linked to the operation of a neuron in a biological
system.

€

y1
< i−1>

€

y2
< i−1>

€

yk
< i>

€

y3
< i−1>

€

y4
< i−1>

€

y5
< i−1>

€

w1k
< i>

€

w2k
< i>

€

w3k
< i>

€

w4k
< i>

€

w5k
< i>

 Seite 11

Page 11

An MLP Node - continued

  So the input to the kth node of the hidden ith layer is:

 where Ni-1 is the number of nodes at layer i-1.

  Each processing element is simply performing a
sigmoid function.

  Thus, the output of the kth node of the hidden ith

layer is:
€

netk
< i> = y j

< i−1>w jk
< i>

j=1

Ni−1

∑

€

yk
< i> = f netk

< i>() =
1

1+ e−netk
<i>

 Seite 12

Page 12

The Sigmoid Function of an MLP

  The previous sigmoid function, , is known
as the logistic function.

  It can be thought of as a smoothed version of a step
function that goes from 0 to 1. At t=0, f(t)=0.5. €

f t() =
1

1+ e− t

  The derivative of the
logistic function is:

€

df t()
dt

= f (t)(1− f (t))

 Seite 13

Page 13

The Operation of an MLP Node

  If the combination of the input is above
some threshold value, then the kth processing
element at layer i returns 1, else it returns 0.

  The neuron fires.

  A sigmoid function is used instead of a step
function, because it is differentiable and then we
can use, as we will soon see, gradient descent to
train the network.

  An MLP remark: Generally, it is unclear how many
nodes are needed in the hidden layer to achieve
optimal performance of the MLP. We usually just try
different number of nodes in the hidden layer.

€

netk
< i>

 Seite 14

Page 14

MLP and Classification

  MLPs like RBFNs are used in computing discriminant
functions.

  Recall that, a discriminant function for class Ωκ is a
polynomial that evaluates to 1 if the feature vector
belongs to that class. Otherwise it evaluates to zero.

  The input to an MLP used for classification is a feature
vector and the output is a discriminant vector

€

dκ
 c () =

1 if c ∈ Ωκ

0 otherwise

€

 c

€

d = (d1,d2,…,dK)

MLP

€

 c

€

d

 Seite 15

Page 15

A Simple MLP Setup

  Consider an MLP with a single
hidden layer.

  For each perceptron j in layer 1
we have:

€

c1

€

c2

€

cM €

h2
<1>

€

h j
<1>

€

€

€

h1
<1>

€

€

wij
<1>

€

w jk
<2>

€

net j
<1>

€

y j
<1>

€

f1
<2>

€

f2
<2>

€

fk
<2>

€

d2

€

d1

€

dK

€

net j
<1> = ciwij

<1>

i=1

M

∑

€

netk
<2> = y j

<1>w jk
<2>

j=1

N1

∑€

y j
<1> = 1

1+ e−net j
<1>()

  For each perceptron k in layer 2 we have:

€

dk = 1
1+ e−netk

<2>()

Training = estimate
the weights!

 Seite 16

Page 16

Training

  Let be a K-dimensional (for K distinct classes)
binary discriminant vector, such that all its elements
are 0, except the element κ, to which the input
feature vector is assigned.

  The training set is composed of N pairs of training
samples of the form:

 where is the discriminant vector that
selects the class Ωκ(l) to which the sample
belongs.

€

d κ (
 c)

€

T =
 c l ,

d κ (l)(
 c l)

 ,l =1,2,…,N

€

d κ (l)(
 c)

€

 c l

€

 c

 Seite 17

Page 17

Least Squares Estimator

  Goal: Estimate the weights .

  We know which discriminant vector we should
be getting for each of N our training samples.

  We want to set up the weights in such a way that we
minimize the mismatch between the correct
discriminant vector and the one estimated by
the MLP, .

  We can use the sum of squared errors over all the
samples as a performance measurement for the
MLP:

€

E =

d l −

d l
l=1

N

∑
2

€

w jk
< i>

€

d (c)

€

d (c)

€

d (c)

 Seite 18

Page 18

Least Squares Estimator -continued

  Thus, we want our MLP to satisfy the following
objective function:

 where the vector is a vector that combines all
the and in a single concatenated form.

  A standard approach for this type of optimization of
objective function is the gradient descent method.

€

 w

€

wij
<1>

€

w jk
<2>

€

 w = argmin
wij

<1> ,w jk
<2>

E(w) = argmin
wij

<1> ,w jk
<2>

d l −

d l
l=1

N

∑
2

 Seite 19

Page 19

Gradient Descent

  Recall that the gradient points to the direction of
largest increase, so we have to move to the opposite
direction of where the gradient is pointing.

  Recall also that gradient descent has three limitations:
1.  It can only find a local minimum. So it works fine only if the

function is unimodal.
2.  Its performance depends on the initialization.
3.  It may take a while to converge to a minimum.

 Seite 20

Page 20

Gradient Descent - continued

  The MLP objective function is:

  The estimation of is done with a gradient
descent method as follows:

€

 w

€

 w = argmin
wij

<1> ,w jk
<2>

E(w) = argmin
wij

<1> ,w jk
<2>

d l −

d l
l=1

N

∑
2

€

 w (p) =
 w (p−1) −η∂E(w)

∂
 w

=

=
 w (p−1) −η

∂

d l −

d l
l=1

N

∑
2

∂
 w

 Seite 21

Page 21

Second Layer Weights

  Step 1: Computation of , i.e. considering
only the weights of the 2nd layer.

  Using the chain rule:

  We can evaluate each term separately.

€

∂E(w)
∂
 w <2>

€

∂E(w)
∂w jk

<2> =
∂E(w)
∂dk

∂dk

∂netk
<2>

∂netk
<2>

∂w jk
<2>

€

∂E(w)
∂dk

=

∂

d l −

d l
l=1

N

∑
2

∂dk

= 2 dk −

d k()

 Seite 22

Page 22

Partial Derivatives

  From the chain rule we have:

  The 2nd term evaluates to:

 add and subtract 1 to the numerator of the 1st
term.

€

∂E(w)
∂w jk

<2> =
∂E(w)
∂dk

∂dk

∂netk
<2>

∂netk
<2>

∂w jk
<2>

€

∂dk
∂netk

<2> =
∂

1
1+ e−netk

<2>

∂netk
<2> =

e−netk
<2>

1+ e−netk
<2>

1
1+ e−netk

<2>

€

=
1+ e−netk

<2>

−1
1+ e−netk

<2>

1
1+ e−netk

<2> = 1− dk()dk

 Seite 23

Page 23

Partial Derivatives - continued

  From the chain rule we have :

  The 3rd term evaluates to:

  Combining the 3 partial derivative terms together:

€

∂E(w)
∂w jk

<2> =
∂E(w)
∂dk

∂dk

∂netk
<2>

∂netk
<2>

∂w jk
<2>

€

∂netk
<2>

∂w jk
<2> =

∂ yi
<1>wik

<2>

i=1

N1

∑

∂w jk
<2> = y j

<1>

€

∂E(w)
∂w jk

<2> = 2 dk −

d k() 1− dk()dk y j

<1>

 Seite 24

Page 24

First Layer Weights

  Step 2: Computation of , i.e. considering
only the weights of the 1st layer.

  Using the chain rule:

  We can evaluate each term separately, starting from
the 2nd term. As before, we get:

€

∂E(w)
∂
 w <1>

€

∂E(w)
∂wij

<1> =
∂E(w)
∂y j

<1>

∂y j
<1>

∂net j
<1>

∂net j
<1>

∂wij
<1>

€

∂y j
<1>

∂net j
<1> =

∂
1

1+ e−net j
<1>

∂net j
<1> = 1− y j

<1>()y j
<1>

 Seite 25

Page 25

Partial Derivatives Again

  From the chain rule we have :

  The 3rd term evaluates to:

  The only term that is still missing is the first term of
the chain rule application:

€

∂net j
<1>

∂wij
<1> =

∂ ciwkj
<1>

k=1

M

∑

∂wij
<1> = ci

€

∂E(w)
∂wij

<1> =
∂E(w)
∂y j

<1>

∂y j
<1>

∂net j
<1>

∂net j
<1>

∂wij
<1>

€

∂E(w)
∂y j

<1>

 Seite 26

Page 26

A Difficult Partial Derivative

  The computation of is not obvious, because
is in a hidden layer.

  It is not observable.

  It took researchers 10 years to find a way to
compute this derivative.

  The main idea behind its computation:

  This means that we use the observed output and
sum over over all possible nodes in the hidden
layer.

€

∂E(w)
∂y j

<1>

€

y j
<1>

€

∂E(w)
∂y j

<1> =
∂E(w)
∂dkk=1

N

∑ ∂dk

∂netk
<2>

∂netk
<2>

∂y j
<1>

 Seite 27

Page 27

Traditional ANN Description

  In terms of more traditional ANN description, at the
perceptron level, perceptrons are trained by a
simple learning algorithm which is usually called the
delta rule.

  It calculates the errors between the estimated
output and the expected sample output data,

  The delta rule use this error to create an adjustment
to the weights, thus implementing a form of
gradient descent.

  One of the most popular terms for this type of
training of an MLP is called back-propagation.

€

d (c)

€

d (c)

 Seite 28

Page 28

Back-Propagation

  In back-propagation the output values are compared
with the correct answer to compute the value of some
predefined error-function.

  By various techniques the error is then fed back through
the network.

  Using this information, the algorithm adjusts the weights of
each connection in order to reduce the value of the error
function by some small amount.

  After repeating this process for a sufficiently large number
of training cycles the network will usually converge to some
state where the error of the calculations is small.

  In this case one says that the network has learned a certain
target function.

€

d (c)

 Seite 29

Page 29

  Back-propagation algorithm

  It adjusts the weights of the NN in order to
minimize the average squared error.

Function
signals
Forward Step

Error signals
Backward
Step

Graph Representaion of Back-Propagation

 Seite 30

Page 30

  Sensible stopping criterions:

  Average squared error change: Back-prop is considered to
have converged when the absolute rate of change in the
average squared error per epoch is sufficiently small (in the
range [0.1, 0.01]).

  Generalization based criterion: After each epoch the NN is
tested for generalization. If the generalization performance
is adequate then stop.

  Epoch is one run through the entire training set (or its
subpart that is used for training.

Stopping Back-Propagation

 Seite 31

Page 31

 An ANN generalizes well if the I/O
mapping computed by the network is
nearly correct for new data (test set).

 Factors that influence generalization:
  the size of the training set.
  the architecture of the NN.
  the complexity of the problem at hand.

 Overfitting (overtraining): when the NN
learns too many I/O examples it may
end up memorizing the training data.

Generalization

 Seite 32

Page 32

Graphical Representation of Overfitting

 Seite 33

Page 33

ANN Examples

  Alvinn: CMUs neural network that learned to drive a
van from camera inputs.

  NETtalk: a network that learned to pronounce
English text.

  Recognition of hand-written zip codes.

  Lots of applications in financial time series analysis.

 Seite 34

Page 34

NETtalk

  It was developed by Sejnowski & Rosenberg in 1987.

  The task was to learn to pronounce English text from
examples.

  Training data was 1024 words from a side-by-side
English/phoneme source.

  Input: 7 consecutive characters from written text
presented in a moving window that scans text.

  Output: phoneme code giving the pronunciation of
the letter at the center of the input window.

  Network topology: 7x29 inputs (26 chars +
punctuation marks), 80 hidden units and 26 output
units (phoneme code). Sigmoid units in hidden and
output layer.

 Seite 35

Page 35

NETtalk Performance

  Perfromance of NETtalk:
  95% accuracy on training set after 50 epochs of training by

full gradient descent.
  78% accuracy on a set-aside test set.

  Dectalk in comparison is a rule based expert system,
based on a decade of analysis by linguists.

  Dectalk outperformed NETtalk.

  Keep in mind, NETtalk learns from examples alone
and was constructed with little knowledge of the
task.

 Seite 36

Page 36

ALVINN

Automated driving at 70 mph on a public
highway

Camera
image

30x32 pixels
as inputs

30 outputs
for steering

30x32 weights
into one out of
four hidden
unit

5 hidden
layers

 Seite 37

Page 37

Remarks on MLPs and Biology

  Multilayer perceptron are biologically inspired:
  independent nodes
  change of connection weights resembles synaptic plasticity
  parallel processing

  On the other hand, back-propagation MLPs lack
brain-like structure and require varying synapses
(inhibitory and excitatory).

  Not yet clear what is biological plausible because
biological knowledge changes over time

 Seite 38

Page 38

MLPs and Function Approximations

  Some researchers, e.g. Trappenberg, claim that
multilayer networks can approximate any function
arbitrarily well.

  However, this universal function approximation
theory assumes, unrealistically, infinite resources.

  Furthermore, MLPs cannot capture all functions, i.e.
partial recursive functions which are often used in
modeling the computational properties of human
language.

  There is no guarantee that MLPs have the
generalization ability from limited data as humans do.

 Seite 39

Page 39

General Remarks on MLPs

  MLPs tolerate noise during processing and in input.

  They tolerate damage (loss of nodes).

  Input normalization often improves the MLP
performance.

  Rule of thumb: the number of training examples
should be at least five to ten times the number of
weights of the network.

  An MLP classifier (using the logistic function)
aproximates the a-posteriori class probabilities,
provided that the size of the training set is large
enough.

 Seite 40

Page 40

References

1.  The ANN layout figure is courtesy of J. Steinwender and S. Bitzer,
http://www.vorlesungen.uni-osnabrueck.de/informatik/cogarc/slides/mlp.pdf

2.  Sigmoid plot courtesy of wikipedia http://en.wikipedia.org/wiki/File:Logistic-curve.svg

3.  Gradient descent plot courtesy of K. Gurney
http://rstb.royalsocietypublishing.org/content/362/1479/339/F4.large.jpg

4.  The Back-propagation graph and some of the comments on bak-propagation are courtesy of E.
Marchiori http://www.poli.usp.br/d/pmr5406/Download/Aula

5.  MLP examples courtesy of N. Intrator http://www.math.tau.ac.il/~nin/Courses/NC05/MLP.ppt

