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SVD is a matrix factorization technique.
It can be applied on any real or complex m× n matrix.
It is often used in computing the pseudo-inverse of a matrix and in determining
the rank, range and null space of a matrix.

Spectral theorem
Let A be a normal matrix.
If A is a real matrix, then A is normal if AT A = AAT , where AT is the transpose
of A.
If A is a complex matrix, then A is normal if A∗A = AA∗ where A∗ is the conju-
gate transpose of A.
All normal matrices are square.
Theorem: A can be unitarily diagonalized using a basis of eigenvectors.

D = P−1AP (1)

where P is the matrix with As eigenvectors as its columns, and D is a diagonal
matrix of eigenvalues.

SVD: a generalization of the spectral theorem
Let M be an m× n matrix.
Then M can be factorized as follows:

M = USV T or M = USV ∗if M is complex (2)

where

− U is an m×m orthogonal matrix (unitary if U is complex),
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− S is an m×n matrix with nonnegative numbers on the diagonal (as defined for
a rectangular matrix) and zeros off the diagonal, and

− V T is another n× n orthogonal matrix.

This type of factorization is called the Singular-Value Decomposition (SVD) of M .
This decomposition shows that the function of every matrix can be described as a
rotation, followed by a stretch, followed by another rotation.

Note that

− V contains a set of orthonormal ”input” or ”analysing” basis vector directions
for M . The columns of V are the right-singular vectors of M .

− U contains a set of orthonormal ”output” basis vector directions for M . The
columns of U are the left-singular vectors of M .

− S contains the singular values, which can be thought of as scalar ”gain controls”
by which each corresponding input is multiplied to give a corresponding
output.

Applications
1. Pseudoinverse
Let M+ be the pseudoinverse of M .
To compute the pseudoinverse:

a. Do SVD(M ) to compute U, S, and V .

b. Let S+ be the pseudo-inverse of S, which is formed by transposing S and
replacing every nonzero (i.e. diagonal) entry by its reciprocal.

c. M+ = V S+U

The pseudoinverse is used in solving linear least squares problems.

2. Rank of M
The rank of M equals the number of non-zero singular values which is the same
as the number of non-zero elements in S. The rank of a matrix M is the number
of linearly independent rows (or columns, it is equivalent) of M .

3. Null space of M
The null space of M is the set of vectors x for which Mx = 0. The right singular
vectors of M , i.e. the column vectors of V , which correspond to the non-zero
singular values of M , span the null space of M .
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4. Range of M
The range of M is the set of vectors b for which Mx = b has a solution for x.
The left singular vectors of M , i.e. the column vectors of U , which correspond to
the non-zero singular values of M , span the range of M .

SVD and Eigenvalue Decomposition
In the special case that M is a Hermitian matrix (i.e. a normal matrix which is
equal to its own conjugate transpose, M = M∗), then the singular values and
singular vectors coincide with the eigenvalues and eigenvectors of M ,

M = V SV ∗, (3)

where the columns of V are the eigenvectors of M , and S is a diagonal matrix of
eigenvalues.

Linear Least Squares
We have m linear equations with n unknowns, where m > n.
In a matrix form:

Ax = b (4)

where A is a known m × n matrix, x is an n-element vector of unknowns and b
is an m-element vector of measurements.
We want to minimize the Euclidean norm squared of the residual Ax− b,

min‖Ax− b‖2. (5)

Then the minimizing vector x̂ is:

x̂ = A+b (6)

where A+ is the pseudoinverse, A+ = (AT A)−1AT .
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