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m Heuristic feature extraction methods

B Analytic feature extraction methods
= Principal Component Analysis (PCA)
= Minimal Intra-class Distance
= Maximal Inter-class Distance
= Linear Discriminant Analysis (LDA)

= Optimal Feature Transform



Analytic Methods for Feature Computation Ay

B Analytic feature extraction methods derive a linear
transformation ® that satisfies a specific optimality
criterion. ;= CI)]‘

B So far we have seen optimality criteria that are
related to the postulates of pattern recognition:

= Finding principal components that can explain the variability of
the data.

= Tight clusters for each class.

= Distinct clusters for different classes.

m \What about an optimality criterion that is directly
related to the goal of pattern recognition itself:
Good recognition (classification) rates



Optimal Feature Transform N

B There exists an analytic feature extraction method
whose goal is to minimize the number of
misclassifications.

m Alternatively one can think of the dual problem
which is maximizing the number of correct
classifications.

B The resulting features are then optimal for the
overall goal of pattern recognition.

B Thus, such a feature extraction method is called an
Optimal Feature Transform (OFT).



Optimality Criterion of OFT N

B The goal of OFT is to derive a transformation matrix
d that minimizes misclassifications.

B Expressing this goal mathematically requires us to
precisely define misclassification.

B This implies that we have to set up the basics for
describing classification itself.

m [t is a long derivation, so keep in mind that at the
end we want to derive an optimization function

S6((I>)=...

that describes misclassifications.



Gaussian Distributed Features i

B We can not design a feature transform that will be
optimal for any possible input signal.

B Rather we design optimal feature transformations for
particular cases.

m So, let's look at one such particular case.
B Special case: Features are normally distributed, i.e.

—

the probability density function of ¢ is a Gaussian
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where N'is a Gaussian distribution with amplitude ¢ ,
mean U, and variance X .
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Different Decision Regions
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Distance Function A

B Consider a function u() which is a measure of how far

a point in feature space is from the center of a cluster.

= Uu4() is a distance measure to the center of cluster 1.
= U,() is a distance measure to the center of cluster 2.

m If for a specific feature vector ¢, , u,(c,) <u,(c;) then
we classify ¢, as belonging to class Q;.
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Decision Boundary A

B There is a region, where it is ambiguous whether
the data belongs to class 1, Q4, or class 2, Q..

B This region is called the decision boundary.
m [t is the area where u,()= u,().

m It is the where we are most probable to have
misclassifications for both classes.

Gy
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OFT and Decision Boundary A

m Recall that the goal of OFT is to derive a transformation
matrix & that minimizes misclassifications.

m We also know that the misclassifications will most
probably occur at the decision boundary (u,()= u,()).

B So we have to focus our derivation of the optimization

function for the computation of ® on the decision
boundary and the distance functions.

B Assuming that the feature vectors within each class are
normally distributed, an appropriate distance function

IS ~
Mahalanobis

U, (E) - (C — Uy )T Z;l(é’ - laK) distance
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Decision Boundary Manifold A

B The decision boundaries are the manifolds where the
points belonging to them are equidistant to different

class centers:
u, (€)= u, (€)}

where H_, is the decision boundary between classes
Q_and Q,.

B What does the shape of H_, look like?

= Straight line?
= Section of a Circle?
= Section of an Ellipse?

H, ={c

m To answer that we must look at the distance function.
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Shape of the Decision Boundary A

m At the decision boundary u_(¢)=u,(c)
B Using the Mahalanobis distance metric

u (¢)=u,(¢) = (6 -g,) =/ (¢ -i,) = (¢ -i,) = - i)

—

where i, and X. are constants for each class €2,.

B This equation shows that, for classes whose features
follow a Gaussian distribution, H_, is quadratic in the
components of the vector c.

m This means that in a 2D feature space H_, will look
like a parabola.
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On the Mahalanobis Distance i

m Consider the case where all the feature vectors that
belong to class Q_are equidistant from the mean
value of that class, U.:

u (é)=a, YéEQ,
where o is a constant.

m Plot such a distribution.

m If u () is the Euclidean distance, then we get a
circle of radius o which is centered around .

B Looking at the definition of the Mahalanobis
distance, u (¢)=(¢-i.) =(¢ -1, ) we get a circle
only when the variance matrix is the identity 2_=1.
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On the Mahalanobis Distance - cont. i

B In general, the (co-)variance matrix is not the
identity matrix I, 2_= 1.

B In 2D think of a Gaussian with independent standard
deviations in each of the two axes, O, %0, What
one gets is an oblong 3D bell shape.

m If we consider a set of feature pomts c that are
equidistant to the class mean u_, i.e. uK(c) =a, For
this general case, we get an ellipsoid.

m Thus H_, is an ellipsoid.
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Ellipsoids and Classification N

m There is an ellipsoid in class €2 that just touches the
decision boundary H_,. There is an ellipsoid in class

(2, that just touches the decision boundary H_, .
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Ellipsoids and Classification - continued A

m Consider the maximal ellipsoid for class €2, that still

completely lies on the Q2 _side of the decision
boundary H_, .

m For all the points inside that ellipsoid u, (¢) <u,(c).

B S0 as long as we stay within the ellipsoid, there is
no ambiguity about our classification decision, there
IS no misclassification.

G,




OFT and Ellipsoids N

B The goal of OFT is to derive a transformation matrix
d that minimizes misclassifications.

m Find a ® that transforms the input signal ]7 to a
feature vector ¢ so that the radius of the “touching’
ellipsoid (this “"guarantee” ellipsoid) is maximal.

4

m In that way we will have the largest possible region
in the feature space where we will be getting correct
classifications.

m Still missing: A mathematical definition of the
touching ellipsoid.

B Keep in mind that there may be more than 2 classes.
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Guarantee Ellipsoid and Decision Boundary

m et u_, be the minimum distance of a feature vector ¢
on the decision boundary, ¢ € H,,, to the mean value
of class 2, :

U, = Crgg uK(c)

m In other words, we walk on the decision boundary. We
compute u_(c) for each point on the decision
boundary H_, . For one such point u,(¢) will be
minimal. This "minimal” point is where the

"guarantee” ellipse of class Q _touches the boundary.

®m We can have more than 2 classes. So we get a
decision boundary H ; for every pair of classes Q.
and ;. For each H, we geta U.



Page 19

Multiclass Decision Boundaries Ay

U9 = const
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Using the Guarantee Ellipsoids A

m As long as we are inside a “guarantee” ellipse, we
have ideally no misclassifications.

B In a multiclass setup, we will possibly end up with
intersecting ellipses.

m In order to preserve the “no misclassification
property” of the guarantee ellipse, we must avoid
intersections that result from the different decision
boundaries.

m Thus, we must be conservative. For each particular
class € we must examine each decision boundary
with that class, H,,,H 4.H,,.... , and pick the ellipse
that is closest to the mean of the cluster.
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Using the Guarantee Ellipsoids - continued Ay

B For each particular class ©Q_we must examine each
decision boundary with that class, H,,.H,,.H,, ...
and pick the ellipse that is closest to the mean of the
cluster.

B We can use the minimal distance to find such an
ellipse: U, =minu,,

K
m K=\

m A pattern will be correctly classified if the feature
vector ¢ lies inside the ellipsoid with radius u,

m For each class Q_we get a radius that ensures
correct separation of the classes €_and €,. To be
able to separate all classes, we take the smallest
radius among all classes €,
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Multiclass Decision Boundaries - revisited Ay

U9 = CON S|
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Probability of Misclassification N

m What happens outside the ellipse?

B There may still be points outside the conservative
ellipse that belong to class €2_ but get mistakenly
classified as belonging to another class.

m What is the probability of my making this mistake?

P, (€)= p(u,, <u(c))

m So the overall error probability is the sum of all the
classes weighted by the probability of the class
occurring

Perr = Ep Jp; (€ iP(QK)p(umeK(E))
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Probability of Misclassification- continued A

B So the overall error probability is the sum of all the
classes weighted by the probability of the class
occurring'

Do = Ep Jp, (€ Ep )p(u,, <u(c))

m Use Chebyshev S |nequaI|ty.

p(uK < uK(E)) < M , where M = dim(¢)
! u

Km

B The function we want to minimize for the OFT

computation is then: K M
{S6((I)) = perr = EP(QK)M_ }
K=1

Km
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Linear Transformations in Feature Space A

m What happens if we apply a linear transformation to
the feature vector c¢?

m Consider for example the case, where ¢’ is related to
vector ¢ by an invertible linear transformation B:

¢ = B¢
B Are the mean values of vectors ¢ and ¢'related?
U =E{c}

u. =E{Bc}=BE{c} = Bh,

B So the new expected value is just the original expected
value transformed by B.



Linear Transformations in Feature Space 2 A,

m Are the covariances of vectors ¢ and ¢’ related?
- - - - \T
3, =E{(c-p,)c-i,) |

5, =E\(E-i)e - 5)'|

B The covariance of the linearly transformed vector is
linearly related to the covariance of the original vector.
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Invariance of the Mahalanobis Distance Ay

m How is the Mahalanobis distance of the transformed
vector ¢’ affected?

(&)= (- i) 2 (e - )
- (B¢ - Bii,)' (B2, B") (BE - Bii)
-(e-5,) B'(B") ='B"B(c - i,)
-(¢-a,) =@ -1,)
- 1, (¢)
m Conclusion: The Mahalanobis distance metric u () is

independent of regular (aka invertible) linear
transformations.
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Impact of the Mahalanobis Invariance A

B Can we use this invariance property to simplify the
optimization problem of computing the transformation

matrix for the Optimal Feature Transform?

K
A . : M
P = arg;)nm 5. (D) = arg;nmg p(QK)u—

Km

g ®< RMN with MN unknowns.

B Can we reduce the MN search space for an optimal
solution by using the invariance property of u _()?

m Recall that: E=q)]7

m What happens when we apply to the feature vector ¢
a reqgular linear transformation?
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Impact of the Mahalanobis Invariance — cont

m When we apply a reqgular linear transformation B to ¢ :
¢' = B¢ = BOf =®'f , where @' = B

B Due to the invariance of the Mahalanobis distance to
regular linear transformations, ¢ has the same u ()
and therefore the same optimal solution to s.(P).

m Thus, @' is also an optimal feature transformation
matrix.

B Can we select a regular linear transformation B so that
deriving the elements of the transformation matrix @’
involves a smaller search space?
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Impact of the Mahalanobis Invariance — cont

B B must be an MxM invertible matrix.
m Let us choose a B so that @’ has the following form:

1 0 --- 0
0 1 --- 0
o=, . . D
00 - 1

where @" is multiplied to the left with an MxM
identity matrix.
m Why should ®" have this form?

B Because the search space is reduced from MN
dimensions to MN-M2,
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Remarks on Computing ¢ Ay

B We reduced the search space, but we still have to

estimate @' M

P'= argmln argmmz p(R )—
u

Km

m Deriving the elements of CI) is not trivial.

m Keep trying to simplify the problem as much as
possible.

B For example, we saw how one can exploit the
invariance of u,.() to invertible linear
transformations in order to reduce the very large
search space.



