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Pattern Recognition Pipeline 

n  Heuristic feature extraction methods 
n  Analytic feature extraction methods 

§  Principal Component Analysis (PCA) 

§  Minimal Intra-class Distance 

§  Maximal Inter-class Distance 

§  Linear Discriminant Analysis (LDA) 

§  Optimal Feature Transform 

 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	



Learning Training samples 
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Analytic Methods for Feature Computation 

n  Analytic feature extraction methods derive a linear 
transformation      that satisfies a specific optimality 
criterion. 

n  So far we have seen optimality criteria that are 
related to the postulates of pattern recognition: 
§  Finding principal components that can explain the variability of 

the data. 

§  Tight clusters for each class. 

§  Distinct clusters for different classes. 

n  What about an optimality criterion that is directly 
related to the goal of pattern recognition itself: 
Good recognition (classification) rates 
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Optimal Feature Transform 

n  There exists an analytic feature extraction method 
whose goal is to minimize the number of 
misclassifications.  

n  Alternatively one can think of the dual problem 
which is maximizing the number of correct 
classifications. 

n  The resulting features are then optimal for the 
overall goal of pattern recognition. 

n  Thus, such a feature extraction method is called an 
Optimal Feature Transform (OFT). 



 Seite 5 

Page 5 

Optimality Criterion of OFT 

n  The goal of OFT is to derive a transformation matrix 
Φ that minimizes misclassifications. 

n  Expressing this goal mathematically requires us to 
precisely define misclassification. 

n  This implies that we have to set up the basics for 
describing classification itself. 

n  It is a long derivation, so keep in mind that at the 
end we want to derive an optimization function 

 that describes misclassifications. 
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Gaussian Distributed Features 

n  We can not design a feature transform that will be 
optimal for any possible input signal. 

n  Rather we design optimal feature transformations for 
particular cases. 

n  So, let's look at one such particular case. 

n  Special case: Features are normally distributed, i.e.  
the probability density function of      is a Gaussian 

 where N is a Gaussian distribution with amplitude     , 
mean       and variance     .   
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Different Decision Regions 

c1 

c2 

µ1 

µ2 Feature space 
region where 
classification 
decision is 
straightforward  

? 

The shape of the 
yellow region is 
controlled by  
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Σ1

The shape of the 
blue region is 
controlled by  
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Distance Function 

n  Consider a function u() which is a measure of how far 
a point in feature space is from the center of a cluster.  
§  u1() is a distance measure to the center of cluster 1. 
§  u2() is a distance measure to the center of cluster 2. 

n  If for a specific feature vector     ,                     then 
we classify      as belonging to class  Ω1. 
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Decision Boundary 
n  There is a region, where it is ambiguous whether 

the data belongs to class 1, Ω1, or class 2, Ω2. 
n  This region is called the decision boundary. 
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c2 

µ1 

µ2 

n  It is the area where u1()= u2(). 
n  It is the where we are most probable to have 

misclassifications for both classes. 
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OFT and Decision Boundary 

n  Recall that the goal of OFT is to derive a transformation 
matrix Φ that minimizes misclassifications. 

n  We also know that the misclassifications will most 
probably occur at the decision boundary (u1()= u2()). 

n  So we have to focus our derivation of the optimization 
function for the computation of Φ  on the decision 
boundary and the distance functions. 

n  Assuming that the feature vectors within each class are 
normally distributed, an appropriate distance function 
is:  
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Decision Boundary Manifold 

n  The decision boundaries are the manifolds where the 
points belonging to them are equidistant to different 
class centers: 

 where        is the decision boundary between classes 
Ωκ and Ωλ. 

n  What does the shape of        look like? 
§  Straight line? 
§  Section of a Circle? 
§  Section of an Ellipse? 
§  … 

n  To answer that we must look at the distance function. 
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Shape of the Decision Boundary 

n  At the decision boundary  
n  Using the Mahalanobis distance metric 

 where      and      are constants for each class Ωi. 
n  This equation shows that, for classes whose features 

follow a Gaussian distribution,       is quadratic in the 
components of the vector    . 

n  This means that in a 2D feature space         will look 
like a parabola. 
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n  Consider the case where all the feature vectors that 
belong to class Ωκ are equidistant from the mean 
value of that class,    : 

 

 where α is a constant.  

n  Plot such a distribution. 
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On the Mahalanobis Distance 

n  If         is the Euclidean distance, then we get a 
circle of radius α which is centered around    . 

n  Looking at the definition of the Mahalanobis 
distance,                                      , we get a circle 
only when the variance matrix is the identity          .  
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n  In general, the (co-)variance matrix is not the 
identity matrix I,          . 

n  In 2D think of a Gaussian with independent standard 
deviations in each of the two axes,            . What 
one gets is an oblong 3D bell shape. 

 

n  If we consider a set of feature points     that are 
equidistant to the class mean     , i.e.                For 
this general case, we get an ellipsoid. 

n  Thus       is an ellipsoid. 
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On the Mahalanobis Distance – cont. 
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Ellipsoids and Classification 

n  There is an ellipsoid in class Ωκ that just touches the 
decision boundary      . There is an ellipsoid in class 
Ωλ that just touches the decision boundary       .   
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This “touching” 
ellipsoid gives 
a classification 
guarantee.  
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Ellipsoids and Classification - continued 

n  Consider the maximal ellipsoid for class Ωκ that still 
completely lies on the Ωκ side of the decision 
boundary       . 

n  For all the points inside that ellipsoid                    . 
n  So as long as we stay within the ellipsoid, there is 

no ambiguity about our classification decision, there 
is no misclassification. 
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OFT and Ellipsoids 

n  The goal of OFT is to derive a transformation matrix 
Φ that minimizes misclassifications. 

n  Find a Φ that transforms the input signal     to a 
feature vector      so that the radius of the “touching” 
ellipsoid (this “guarantee” ellipsoid) is maximal. 

n  In that way we will have the largest possible region 
in the feature space where we will be getting correct 
classifications. 

n  Still missing: A mathematical definition of the 
touching ellipsoid. 

n  Keep in mind that there may be more than 2 classes. 
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Guarantee Ellipsoid and Decision Boundary 

n  Let       be the minimum distance of a feature vector         
on the decision boundary,             , to the mean value 
of class      : 

n  In other words, we walk on the decision boundary. We 
compute           for each point on the decision 
boundary        . For one such point          will be 
minimal. This “minimal” point is where the 
“guarantee” ellipse of class       touches the boundary. 

n  We can have more than 2 classes. So we get a 
decision boundary        for every pair of classes       
and     . For each        we get a      . 
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Multiclass Decision Boundaries 
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Using the Guarantee Ellipsoids 

n  As long as we are inside a “guarantee” ellipse, we 
have ideally no misclassifications. 

n  In a multiclass setup, we will possibly end up with 
intersecting ellipses.  

n  In order to preserve the “no misclassification 
property” of the guarantee ellipse, we must avoid 
intersections that result from the different decision 
boundaries. 

n  Thus, we must be conservative. For each particular 
class      we must  examine each decision boundary        
with that class,                       , and pick the ellipse 
that is closest to the mean of the cluster.  
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Using the Guarantee Ellipsoids - continued 

n  For each particular class      we must  examine each 
decision boundary with that class,                       , 
and pick the ellipse that is closest to the mean of the 
cluster.  

n  We can use the minimal distance to find such an 
ellipse: 

n  A pattern will be correctly classified if the feature 
vector     lies inside the ellipsoid with radius       . 

n  For each class       we get a radius that ensures 
correct separation of the classes       and      . To be 
able to separate all classes, we take the smallest 
radius among all classes       .  
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Multiclass Decision Boundaries - revisited 
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Probability of Misclassification 

n  What happens outside the ellipse? 
n  There may still be points outside the conservative 

ellipse that belong to class       but get mistakenly 
classified as belonging to another class. 

n  What is the probability of my making this mistake? 

n  So the overall error probability is the sum of all the 
classes weighted by the probability of the class 
occurring: 
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Probability of Misclassification- continued 

n  So the overall error probability is the sum of all the 
classes weighted by the probability of the class 
occurring: 

n  Use Chebyshev’s inequality:  

n  The function we want to minimize for the OFT 
computation is then: 
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Linear Transformations in Feature Space 

n  What happens if we apply a linear transformation to 
the feature vector    ? 

n  Consider for example the case, where     is related to   
vector      by an invertible linear transformation B: 

n  Are the mean values of vectors      and     related? 

 

  

€ 

 c 
  

€ 

 
" c 

  

€ 

" 
 c = B c 

  

€ 

 c 

  

€ 

 
µ κ = E  c { }                            
# 
 
µ κ = E B c { } = BE  c { } = B  µ κ

  

€ 

 c 

  

€ 

 
" c 

n  So the new expected value is just the original expected 
value transformed by B. 
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Linear Transformations in Feature Space 2 
n  Are the covariances of vectors      and     related? 
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n  The covariance of the linearly transformed vector is 
linearly related to the covariance of the original vector. 
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Invariance of the Mahalanobis Distance 
n  How is the Mahalanobis distance of the transformed 

vector     affected? 
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n  Conclusion: The Mahalanobis distance metric         is 
independent of regular (aka invertible) linear 
transformations. 
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Impact of the Mahalanobis Invariance 

n  Can we use this invariance property to simplify the 
optimization problem of computing the transformation 
matrix for the Optimal Feature Transform?  

n                  with MN unknowns. 
n  Can we reduce the MN search space for an optimal 

solution by using the invariance property of        ? 

n  Recall that:  
n  What happens when we apply to the feature vector         

a regular linear transformation? 
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Impact of the Mahalanobis Invariance – cont 

n  When we apply a regular linear transformation B to    :  

n  Due to the invariance of the Mahalanobis distance to 
regular linear transformations,      has the same           
and therefore the same optimal solution to         .  

n  Thus,       is also an optimal feature transformation 
matrix. 

n  Can we select a regular linear transformation B so that 
deriving the elements of the transformation matrix       
involves a smaller search space?  
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Impact of the Mahalanobis Invariance – cont 

n  B must be an MxM invertible matrix. 
n  Let us choose a B so that      has the following form: 

 where       is multiplied to the left with an MxM 
identity matrix. 

n  Why should       have this form?  
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n  Because the search space is reduced from MN 

dimensions to MN-M2. 
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Remarks on Computing Φ	



n  We reduced the search space, but we still have to 
estimate      . 

n  Deriving the elements of      is not trivial. 
n  Keep trying to simplify the problem as much as 

possible. 
n  For example, we saw how one can exploit the 

invariance of          to invertible linear 
transformations in order to reduce the very large 
search space. 
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