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Pattern Recognition Pipeline 

n  Classification 
§  Statistical classifiers 

§  Bayesian classifier 
§  Gaussian classifier 

§  Polynomial classifiers 
§  Non-Parametric classifiers 

§  k-Nearest-Neighbor density estimation 
§  Parzen windows 
§  Artificial neural networks 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	


Learning Training samples 
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Artificial Neural Network (ANN) 

n  There is no precise agreed definition among 
researchers as to what is an artificial neural network. 

n  Most would agree that it involves a network of simple 
processing elements (neurons), which can exhibit 
complex global behavior, determined by  

§  the connections between the processing elements and  

§  the element parameters. 

n  In a neural network model, simple nodes (neurons, 
or processing elements or units) are connected 
together to form a network of nodes. 
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ANN Operation 

n  In general an ANN operates as a function             . 
n  The “network” arises because the function        is 

defined as a composition of other functions        , 
which can further be defined as a composition of 
other functions, e.g.        .  
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General Form of ANN 

n  There is great variation in ANNs, depending on: 
§  The number of layers 
§  Whether there are hidden layers or not 
§  The connectivity (We could have feedback loops.) 
§  The adaptability 

n  An ANN does not have to be adaptive. In practice, 
part of their strength comes from adapting: changing 
the weights of the connections in order to produce a 
desired signal flow. 
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network is 
abstracted as an 
ANN black box. 
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Mathematical Description of an ANN 

n  A widely used type of composition is the nonlinear 
weighted sum: 

 where     is a predefined function that forces the 
output of a neuron to be in a certain range, typically 
[0,1] or [-1,1].  

n     is often referred to as an activation function. 
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Activation Function 
n  An activation function tries to mimic the firing of the 

neuron if the incoming signal is sufficiently strong. 
n  Mathematically, this is usually 

achieved with a sigmoid function, 
e.g.: 

 

n  Sigmoid functions have the following characteristic 
properties: 
n  They are differentiable 
n  They have 1 inflection point 
n  They have a pair of horizontal asymptotes 

n  Another typical sigmoid function employed in ANNs 
is the hyperbolic tangent,                    . 
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ANN and Classification 

n  The ANNs that we will examine are used in computing 
discriminant functions. 

n  Recall that, a discriminant function for class Ωκ is a 
polynomial that evaluates to 1 if the feature vector      
belongs to that class. Otherwise it evaluates to zero. 

n  The input of such an ANN is a feature vector     and 
the output is a discriminant vector,                        .    
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Radial Basis Function ANNs 
n  Radial Basis Function (RBF) networks use Radial Basis 

Functions in the nodes of the hidden layer. 

n  An RBF network is a feed-forward 3 layer network: 
§  input layer,      in our case 
§  a hidden layer, where each node       is a separate RBF 
§  an output layer, which is a weighted sum of the hidden layers. 
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Radial Basis Functions 

n  Radial basis functions were first used in 1987 by 
Powell. 

n  A radial basis function (RBF) is a real-valued 
function whose value depends only on the distance 
from the origin, so that 

n  Alternatively, the RBF can be based on the distance 
from some other point    , called a center:  

g(x) = g( x )

g(x, q) = g( x − q )
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Radial Basis Functions - continued 

n  So RBFs are a type of distance function.  
n  As a distance function, RBFs have the key 

characteristic that response decreases 
monotonically with distance from a central point. 

n  Its response decreases radially. 
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Different RBFs 

n  Any distance function that decreases radially can be 
considered a radial basis function. Some commonly 
used RBFs are: 

n  Two different forms of Gaussians: 

n  Multiquadric: 

n  Spline (a.k.a Logarithmic): 
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RBF and Classification 

n  Within the context of classification, RBFs work as 
follows. 

n  We are given a set of N training samples              
and we want to find the best discriminant functions. 

n  One radial basis function (RBF) approach is to use a 
set of N basis functions, each centered around one of 
the training samples, i.e.         . 

n  Given a new feature vector     we use RBFs to 
compute how far away it is from each of the training 
samples. 
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RBF and Classification – continued  

n  The discriminant function is then treated as a linear 
combination of these radial basis functions. 

n  In this type of RBFs training corresponds to the 
estimation of  the weights      from the training data. 

n  In more detail, recall that each           is a binary 
function. Thus the training set has the form: 

 where             is  the discriminant function of the 
class           to which the sample      belongs. 
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RBFN Training 
n  So for each training pair                   we have: 
 
  

n  This can be written as a vector product: 

n  Per class, i.e. per      we obtain N such equations for 
N uknowns,                      .  
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RBFN Training - continued 

n  Since there are N samples in my training set and K 
classes, I have KN such equations. 

 which can be written more compactly as: 
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Important Comment on RBFN Training 

n  If we have many feature vectors in our training data 
and we have an RBF estimate for each individual 
training sample we end up with too many RBFs, too 
many nodes => Slow training and Overfitting!!  

n  Solution: Use centers of clusters of feature vectors 
for the RBFs, instead of the individual feature 
vectors. 

n  Each RBF is now centered around                       
instead of                     : 
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Updated Training of RBFNs 

n  2-stage process: 
1. Unsupervised selection of RBF centers 

 K-means:  

 pick s       values at random. 
  Assign each training sample to its nearest     . 

Recompute      as the mean value of the samples of 
cluster j.  
 Repeat this process until the     s  are stabilized.  

 If using a Gaussian RBF, use MLE to compute  
2. The estimation of      can be done as before via 

linear algebra methods (e.g. SVD) 

  

€ 

 
µ j

  

€ 

 
µ j

  

€ 

 
µ j

  

€ 

 
µ j

  

€ 

 
µ j

€ 

Σ j

  

€ 

 w 



 Seite 19 

Page 19 

Weaknesses of the 2-stage Approach 

n  The estimation of      and      is not guided by the 
discriminant function that is used to compute    .  

n  Hence we have a non-symmetric approach. 
n  Stage 2 relies on the results of Stage 1.  
n  Thus, we have a propagation of estimation errors 

which often means an amplification of errors. 
n  Better solution: use an integrated, fully supervised 

approach like the Orthogonal Least Squares 
approach. 
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RBFN Training via Orthogonal Least Squares 

n  Main idea of OLS: Do not cluster as a preprocessing 
step. 

n  Rather do a sequential selection of the centers 
which leads to the largest reduction in the sum of 
squared errors. 

n  Which sum of squared error (SSE)? 
n  The difference between the computed and the 

expected result (value) of the discriminant 
functions: 
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Orthogonal Least Squares Algorithm 

1.  Start with N pairs                    and s=0 
2.  For each training pair i of the n=N-s features vectors 

  2a. Add the current feature      to the s centers 

       The new vector becomes an additional 
    2b. Compute the weights  

       Use linear algebra as previously described. 

    2c. Compute the sum of squared error, SSE. 
3.  Out of the n candidate cluster centers, select the one 

with the smallest SSE as the next cluster center. 

4.  s++;  
Repeat until the desired # of clusters is reached. 
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