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Pattern Recognition Pipeline 

n  The goal of pre-processing is to transform a signal 
to another signal      so that the resulting signal  
§  makes subsequent processing easier 
§  makes subsequent processing better (more accurate)  
§  makes subsequent processing faster 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	


Learning Training samples 

€ 

f

€ 

h

€ 

h



 Seite 3  Seite 3 

Pre-processing Example 
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Low Contrast Signal 

n  Quite often the captured image has a small  dynamic 
range, i.e. all the pixels in an image have values that 
are within a small range of values, typically much 
smaller than the capability of the sensor. 

Image courtesy of Phillip Capper, http://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg 
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Enhancement of Low Contrast Signal 

n  One goal of pre-processing is to improve the contrast 
by changing the intensity values in the image so that 
they now cover a wider range of values. 

Images courtesy of Phillip Capper, http://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg, 
http://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg  
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Histogram Equalization 

n  Histogram equalization is a method for improving low 
images with a limited range of values. 

n  It achieves that by redistributing the intensities in the 
image. 

n  It is based on the frequency with which different 
intensity values appear in the image (histogram). 

n  It effectively spreads out the most frequently used 
intensities. 

n  The goal of histogram equalization is to produce an 
image where the various intensity values appear almost 
equally often in the image (uniformly distributed)  
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Image Histogram 

Images courtesy of Phillip Capper, 
http://en.wikipedia.org/ 

n  A histogram 
plots for each 
gray level value 
the frequency 
with which that 
value occurs 
(shown in red) 

n  The goal of 
histogram 
equalization is to 
have an almost 
horizontal 
distribution of 
values. 
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Formal Definition of Histogram Equalization 

n  Histogram equalization is a transformation       of 
sample values                   so that          is [0,1]-
uniformly distributed.  

n  In other words we are looking for a function              
such that                     and each value of       has 
equal  probability of occurring.     

n  Does such a function       exist? 

n  Yes, it is based on the cumulative distribution 
function:  
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Cumulative Distribution 

n  Let             be the probability distribution function 
of    .  

n  The cumulative distribution function (cdf) of     is 

n  cdf is always a monotonic function that at infinity 
approaches 1,                    and                   . 
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PDF and CDF plots 
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Image courtesy of http://www.answers.com/topic/cumulative-distribution-function 
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CDF of a CDF 
n  Let                   .  
n  Claim:      is [0,1]-uniformly distributed. 
n       is in [0,1] by definition 

n  Still need to show that       is uniformly distributed. 
€ 

" f = DX ( f )

€ 

" f 

€ 

" f 

€ 

" f 
n  How does the cdf look like for a uniform distribution?      
n  Claim: If            is a [0,1]-uniform distribution, then its 

cdf is the variable itself,                    and vice-versa. 

€ 

pY ( " f )

€ 

DY ( " f ) = " f 

€ 

pY ( " f )

€ 

" f € 

1

€ 

1

€ 

0

€ 

DY ( " f )

€ 

" f 

€ 

0€ 

1

€ 

1



 Seite 12  Seite 12 

CDF of a CDF - continued 

n  Recall that                    is itself a cdf function and as 
such it is a monotonic function. This means that: 

n  How does the cdf of a cdf look like? How does             
look like? € 

" f = DX ( f )
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n  But if                     then      has a [0,1]-uniform distr. 
n  So when we use the mapping                   the values 

end-up being uniformly distributed. 
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Histogram Equalization Algorithm 
1.  Compute the histogram of a given image 
2.  Compute its cumulative distribution function. 

3.  Break the vertical axis of the cdf plot, into n equidistant buckets, 
where n is the number of gray values in the output image.  

4.  Each bucket in the vertical axis corresponds to a gray value of 
the output “equalized” image. 

5.  Let  
6.  Then assign the first K pixel values (in the horizontal x-axis) of 

the cdf to the 1st vertical bucket. The next K pixel values in the 
2nd block of the cdf get mapped to the next bucket etc.  

7.  In the resulting image each of the n intensities has the same 
probability of occurring. The pixels are spread evenly across the 
entire range of these n pixel values. The image has the highest 
possible contrast. 

K =
# of pixels

n
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Histogram Equalization - Clarifications 

n  The redistributed values in the tessellation of  the 
vertical axis correspond to the histogram of the 
equalized image. 

n  A grey value     is mapped from the cumulative 
distribution function          to a new “equalized” grey 
value as follows:  

 where         is the smallest non-zero value in the cdf 
and     is the number of levels in the new image. 
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Histogram Equalization Example 

Original image Histogram of original image cdf of original image 

Image after histogram equalization Histogram of hist. equalized image cdf of hist. equalized image 

Images courtesy of James Matthews, http://www.generation5.org/content/2004/histogramEqualization.asp 
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Some Comments on Histogram Equalization 

n  It is a straightforward, easy to implement technique.  
n  It is not computationally expensive. 
n  Works well in images where both the foreground and 

the background are dark (or both are bright). 
n  In cases where spatial correlation is more important 

that the intensity values themselves, a histogram 
equalized image facilitates further detection and 
analysis. 

n  However, histogram equalization often produces 
unrealistic looking images, or can introduce 
undesirable effects.  
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Intensity Stretching vs Contrast Enhancement 

Original image Image after histogram stretching 

Histogram and cdf of original image 

Images by Stefan Ploner, http://ziegenpeter.zi.ohost.de/uni/ipr/02-equidistantIntensityLevels_vs_histogram.png 
 

Image after histogram equalization 

Histogram and cdf of stretched image Histogram and cdf of equalized image 
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Thresholding 

n  Thresholding is the process of converting a gray-
scale image of       gray levels, into one of        gray 
levels, where               , based on "border" values. 

n  Typically            , in which case the output is a binary 
image, i.e. an image with only 2 gray-levels, 0 and 1.  

n  The process of converting an image to a 2 level 
image is called binarization. 

n  Threshold = brink, border, verge. 
n  Example applications: 

§  Quality control system where the perimeter of the product needs to 
be evaluated. Light colored products on a dark conveyor belt.   

§  Contrast Enhanced CT, where the blood vessels look really dark on a 
light background. Goal is to measure the vessel geometry. 
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Thresholding Example 

Original image Binary image after thresholding 

Perimeter detection on binary image 
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Another Thresholding Example 

Original image Binary image Image after medial 
axis computation 

Images by T.L. McKay et al., “Selective Inhibition of Angiogenesis in Small Blood Vessels and Decrease in Vessel Diameter throughout the 
Vascular Tree by Triamcinolone Acetonide”, Invest. Ophthalmol. Vis. Sci.,  Vol. 49, No. 3, March 2008, pp. 1184-1190,   
http://www.iovs.org/content/49/3/1184.full  
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How Does Thresholding Work? 
n  Thresholding transformation            for           :  

 

n  Which value     should we use?   € 

T( fij )
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T( fij ) =
0   if   f ij ≤θ
1  otherwise
$ 
% 
& 
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L2 = 2

€ 

θ
n  How can we choose a value for      based on what 

we have done so far in class? 

€ 

θ

n  We know how to compute histograms, cdfs and 
break the cdf into blocks of equal width. 

n  Idea: Build the cdf and break into two blocks of 
equal width. 

n  May not result in meaningful binary images. The 
output image will have an equal number of 0s and 1s. 
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n  Bimodal histogram: a histogram with 
two local maxima (one for foreground 
and one for background). 

n  Idea: pick a value between the two 
maxima and use it as a threshold 
value    . 

Bimodal Histograms 

n  The simplest binarization algorithms assume that the background 
has one intensity value and the object(s) of interest have another 
intensity value. With all the shading variations we end up with a 
bimodal histogram.  

€ 

θ

n  Everything below the threshold is assigned a 0 and everything 
above is assigned a 1. 
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Intersection of Gaussians 

n  A rigorous method for selecting a threshold value 
that is close to the minimum between the two 
modes is to treat each mode as a Gaussian.  

n  Methodology: Fit 2 Gaussians and compute their 
intersection.    € 

θ
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f
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Intersection of Gaussians - continued 

n  One Gaussian describes the probability of a particular pixel value 
occurring, given that the pixel belongs to the background, i.e. the 
pixel is in class      ,             . 
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n  The 2nd Gaussian describes the probability of a particular pixel 
value      occurring, given that the pixel belongs to the foreground, 
i.e. the pixel is in class      ,             . 
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Sum of Gaussians 

n  If we have these 2 densities,             and              
we can not just sum them up. Their sum will not be 
equal to 1, and the integral over all possible values 
of a pdf of must sum up to 1:                   . 

n  Instead, we have to take under consideration the 
probability of each class occurring: 

 where            is the probability of having a gray 
value that belongs to the background class and           
is the probability of having a gray value that belongs 
to the foreground class.   
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Sum of Gaussians - continued 

n  How do we compute          ? Recall that           is the probability 
of having a gray value that belongs to the background class. 
Thus, 

 

 and 

n  The resulting sum satisfies the proper pdf behavior. 
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Gaussian Mixture 

n  If a pdf can be decomposed to a linear combination 
of Gaussian densities, then it is called a Gaussian 
mixture. 

n  Gaussian mixtures are widely used in pattern 
recognition.  

n  If you have a random variable and you don't know 
its pdf, use a so-called convex combination of 
Gaussians to approximate it. 

n  The term convex combination denotes that the 
coefficients (i.e. weights) of the different Gaussians 
have to sum up to 1.  
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Computing the Intersection 
n  Let                . 
n  Replace              and               with Gaussian functions. Then, 

 where          are the mean and standard deviation of the 
Gaussian that approximates              and          are the mean 
and standard deviation of the Gaussian that approximates       

n  We want to compute the intersection of the 2 Gaussians.  

n  At the point of their intersection we have 

 

n  We need to compute the value of      that satisfies this equation. 

€ 

α = p(Ω1)

€ 

p( f Ω1)

€ 

p( f Ω2)

€ 

p( f ) ≈α 1
2πσ1

e
−
( f −µ1 )

2

2σ 1
2

+ 1−α( ) 1
2πσ 2

e
−
( f −µ2 )

2

2σ 2
2

€ 

µ1,σ1

€ 

p( f Ω1)

€ 

µ2,σ 2

€ 

p( f Ω2)

€ 

α
1
2πσ1

e
−
( f −µ1 )

2

2σ 1
2

= 1−α( ) 1
2πσ 2

e
−
( f −µ2 )

2

2σ 2
2

€ 

f



 Seite 29  Seite 29 

Solving the Equality 

n  To simplify the computations, we take the natural 
logarithm of the equation. The end result is a 
quadratic equation in    :  

n  Solve for the roots of this equation and set     to the 
real root. 

n  So far we assumed that we know the parameters of 
the 2 Gaussians                 . 

n  But given an image, we have to compute these 
parameters before we can compute the intersection. 
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Procedure for Intersection Computation 

n  So the whole process involves the following steps: 
1. Compute the histogram. 
2. Determine the values of                       that best fit 

the histogram. 
3. Analytically compute    . 

n  This is a very computationally expensive process, 
which may not even fit the data very well.  

n  More often than not we have a histogram with one 
large and one considerably smaller hump. 
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Iterative Solution 
n  An alternative, though sub-optimal, solution is to 

compute an estimate of the intersection iteratively: 

1.  Choose a threshold value      . 
2.  Estimate          from the histogram values that are 

smaller than or equal to      and          from the hist. 
values that are larger than      . (see next slides) 

3.  Estimate     from the ratio of the number of pixels 
that are on each side of     .  

4.  Compute an approximation error and adjust     
accordingly. (see next slides) 

5.  Repeat steps 2 - 4 until the approximation error is 
minimal. 
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Maximum Likelihood (ML) Estimation 
n  Maximum Likelihood Estimation is a statistical method 

for fitting a statistical model to some data and 
providing estimates for the model’s parameters. 

n  ML Estimators are particularly well-suited for Gaussian 
distributions. 

n  Specifically to compute    : 
§  Use the methodology for computing the mean of a set of samples. 
§  Sum up all the values smaller than or equal to     and divide by the 

number of pixels that have such values.  

n  To compute     use the formula for standard deviation: 

 

n  Compute          similarly. 
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Approximation Error 

Images courtesy of http://www.mathworks.de/matlabcentral/fx_files/24867/2/gaussian_mixture_model.png  
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Optimal Thresholding 

n  We are still studying images with bimodal histograms, which we 
approximate by 2 Gaussians. 

n  Can we express finding the threshold value     as an optimization 
problem?  

n  Devise an objective function, such that when you maximize 
(minimize) it, it will give you the optimal threshold value for 
binarization. € 
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Optimality via Error Metric 

n  After binarization all the values                       will be 
mapped to value       and all the values                       will 
be mapped to value     . 

n  Such a mapping causes some loss of info, some error. 
n  For      the associated error is: 
 
n  For      the associated error is: 
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Error Metric 

n  One criterion for selecting a threshold value is then 
choose a value for     that minimizes such errors.  

n  More specifically we want to compute:   

€ 

θ

€ 

ˆ θ = argmin
θ

( # f 1
f = 0

θ

∑ − f )2 + ( # f 2
f =θ +1

fmax

∑ − f )2
& 

' 
( ( 

) 

* 
+ + 

n  Open issue: What do we use for       and     ? 
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n  The minimization function clearly depends on    .  

€ 

θ



 Seite 37  Seite 37 

Optimal Thresholding Algorithm  

1.  Initialize         and        . 
2.  Initialize        .  
Repeat 

3.  Compute                         and                         . 
4.  Compute the total squared error,                . 
5.   If  

6.    
7.    
8.  Increment    . 

Until you have tested all possible     values. 
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Optimality via Probability Distributions 

n  Another criterion for evaluating whether a given threshold 
value      is optimal is how closely the resulting Gaussians 
satisfy certain probability criteria. 

n  Otsu’s thresholding criterion: 
 Choose a threshold      that maximizes the variance 
between the two classes.  

 For Gaussian mixtures this is equivalent to maximizing the 
distance between the 2 mean values. 

n  Note that the distance metric is multiplied by the prior 
class probabilities.  

n  Implementation as before. 
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Unimodal Histogram 

n  What do we do when we don't have bimodal 
histograms and we still need to do binarization? 

n  Another common form of gray-value distributions is 
one with one big, dominant bell-curve (mode) 
together with a smaller one on one side. 

n  For all practical purposes this is considered 
approximately a unimodal histogram. 
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Unimodal Histogram Heuristic 

n  1. Find the gray value with the highest number of occurrences, 
n  2. Look for the gray value            which: 

§  has close to zero occurrences  
§  is as close as possible to the gray value with the highest number of occurrences 
§  is at the long tail of the distribution. 

n  3. Connect the two data points with a straight line. 
n  4. Threshold     is the intensity of  that point on the histogram which 

has the maximum perpendicular distance to the line. 

€ 

p( f )

€ 

f

€ 

fmax p
€ 

fmax p

€ 

fmin p

€ 

fmin p

€ 

θ

€ 

θ



 Seite 41  Seite 41 

Entropy Based Binarization 

n  Entropy based binarization makes no assumptions about 
the shape of the histogram (bimodal, unimodal, etc.) 

n  It still uses probability information, i.e. how often a 
particular value occurs in the signal. 

n  It assumes that there are two distinct sources of 
data, e.g. background (which we will refer to as group/
class     ) and foreground (which we will refer to as 
group/class      ). 

n  It makes no assumptions (uses no prior information) 
about: 
§  the range of values associated with each source 
§  the frequency with which they occur   
§  any separability characteristic of the sources 
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Brief Introduction to Entropy 

n  Entropy in information theory is a measure of the 
uncertainty associated with a random variable. 

n  It is defined as: 

n  The logarithm is used in order to capture the additive 
characteristic for uncertainty. 

n  Low entropy means low uncertainty. It implies that 
there is some prior, additional information available. 

n  Example:  
§  Fair dice has high entropy. Each value is equally likely to occur. 
§  Loaded dice has low entropy. A particular value is more likely to occur. 
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H = − p( f )log p( f )df∫
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Entropy and Thresholding 

n  Consider the case where we have possibly a 
multimodal histogram and no information about the 
two sources: background and foreground. 

n  Lacking any additional information, we want to be as 
objective as possible when selecting a threshold    .  

n  We want to treat both sources as equally likely to 
occur.   

n  We don’t want to introduce any bias. 
n  In terms of entropy, this means high uncertainty, i.e. 

maximum entropy. 
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θ
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Two-Source Entropy Computation 

n  Let                         . 

n  Assuming that we use     as the threshold value that 
separates the two sources, then the amount of 
uncertainty for one source (e.g. background) is:  

 

n  Similarly the amount of uncertainty for the 2nd 
source (e.g. foreground) is: 
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Two-Source Entropy Computation 

n  We don’t want to introduce any bias for either the 
background or the foreground.  

n  We want both of them to be equally likely to occur. 
n  We want to maximize the entropy over both sources. 

n  This method can be easily extended to multi-level 
thresholding. There are just more classes and thetas. 
The search space increases, but the method is the 
same.  € 

ˆ θ = argmax
θ

H1(θ) + H2(θ)( )
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Comments on Entropy-Based Approach 

n  Best suited for: 
§  Bimodal histograms with wide valleys with local small 

modes. 
§  Multimodal histograms 

n  Fitting Gaussians may be misleading. 

n  There is no clear “bottom of the valley”.  
§  It may be an inappropriate threshold value. 
§  It can be hard to compute. We can get stuck in other local 

minima. 
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Image histogram.  
Entropy-selected threshold 
indicated by the arrow. 

Example 

Original image 

Binarized image 
Source: Kapur et al. paper, see slide 50 
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Image histogram.  
Entropy-selected threshold 
indicated by the arrow. 

Example 

Original image 

Binarized image Source: Kapur et al. paper, see slide 50 
Newer version of original image from 
http://www.hlevkin.com/TestImages/cameraman.bmp 
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Image histogram.  
Entropy-selected threshold 
indicated by the arrow. 

Example 

Original image 

Binarized image 
Source: Kapur et al. paper, see slide 50 
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Entropy Thresholding Bibliography 
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Automatic Thresholding Algorithm 

1.  Initialize     to the average gray value: 
2.  Partition the data around     and compute the mean 

value           for each partition. 

3.  Select a new threshold value which is the mean of 
the two means: 

4.  Repeat steps 2 and 3 until the mean values        
and      do not change in successive iterations.   
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θ =mean
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Histogram Equalization in Matlab 

n  Matlab provides 2 versions of histogram equalization: 
§  The new image has uniformly distributed gray values. The user 

specifies the number of gray values. 
§  The new image has a distribution of gray values that closely 

matches a given image histogram.    

Matlab example where the output image has approximately uniformly histogram distribution 

Source: http://www.mathworks.com/help/toolbox/images/ref/histeq.html  
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Binarization in Matlab 
n  In Matlab the threshold value is explicitly given as a 

parameter in the built-in binarization function, im2bw(). 

n  However, Matlab does provide a method for computing 
a threshold value for a given image. 

n  Their threshold value computation is based on Otsu’s 
method. 

Matlab example of an Otsu-based threshold value computation. 

Sources: http://www.mathworks.com/help/toolbox/images/ref/im2bw.html   http://www.mathworks.com/…/ref/graythresh.html     
http://blogs.mathworks.com/steve/2009/08/31/functional-design-clunkers/  


