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Framework of Statistical Classifiers i

m A statistical classifier typically uses a probabilistic
decision function:

8(Q,Ic):¢ = Q,
m Each decision function 6() has a risk associated with
It:

R(S) = f » u, ()(Q,[¢)de
where K_
1,(€) = > 1, Q) PEIR,)

K=1



Framework of Statistical Classifiers - cont iy

B The optimal classifier is the one that uses the
decision function delta that minimizes the risk R(0):

Va\

0 = argmin R(0)
0

which occurs when the decision function “votes” for
the minimal u,(c¢) value.

B Any classifier that maximizes posterior probabilities
IS @ Bayesian classifier:

1 if A=argmax p(Q_|¢)
(R, |6) = Sl ‘

\O otherwise



Gaussian Classifier A

m [t is a Bayesian classifier where we have normally
distributed class-conditional feature vectors p(E\QK).

m Example: 2-class problem, €2, €2,.

B The training data includes N sample feature vectors
from class Q and M sample features vectors from £2,.

B The feature vectors within each class are normally
distributed.



Gaussian Classifier Example A

B Since the Gaussian classifier is a Bayesian classifier
we have to decide based on the maximal posterior
probability p(Q,c) .

m How can we compute, P(¢) and P(R,[6)?

B Use the Bayesian rule.

m Use Maximum Likelihood Estimation (MLE).

Review: It is a statistical method that can be used
when we have a fixed data set and an underlying
probability model to estimate the most likely values
of the parameters of the underlying probability
model. For normal distributions MLE gives a unique
solution.



Gaussian Classifier Example - continued A

m More specifically:m?xp(QA\E) = m?xp(QA)p(E\QA)

B Assuming that our training data is a fair representation
of the true population, the class probability can be
estimated from the samples as follows:

N
Q)=
P(E2) N+ M

B The class conditional probability is normally distributed
p(E|Q) =~ (. 10.Z))

aviaMe i=1 S ana 52 LS () )
i=1 =1




Gaussian Classifier Example - continued A

m Similarly we replace p(Q,/¢) = p(Q,)p(¢|Q,)

B Since the two classes represent the entire population
we can simply use p(£2,) in estimating the class
probability for €,:

p(€2,) =1-p(L2)

m The class conditional probability for the 2nd class €2,

is also normally distributed:

p(E‘Qz)z%(Eﬂaz,zz)
1 < 1 <

m Via MLE u, =MEZEZ- and 2, =_E(25i_ﬁ2)(25i_ﬁ2)T
i=1 =1



Decision Rule of a Gaussian Classifier A

m Once we have estimated p(Ql\E) and p(Qz\E) we
can assign the feature vector ¢ to the class that
gives the largest posterior probability.

B The decision rule for a Gaussian classifiers is:

[t if A=argmax p(Q,)p(c|Q,)
8(Q,[6) = - c

\O otherwise

where
A = argmax p(Q,) p(¢|Q,)

A =argmax p(Q2 ) (c,u_ .2, )
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Decision Rule of a Gaussian Classifier - cont

Keep on expanding...
A =argmax p(Q2 ) (c,u_ .2, )

A= argKmax log(p(Q) N (¢,0,,2,))
A= argélax(log(p(QK )) + IOg(%(EaﬁK 921()))

Lo o\ c_ii
A= argmax(IOg(p(Q ))+log( 1 ——(c—uK) = MK))]

A= argmax(log(p(@ ) +log( )
272

A= argmax(log(p(Q ) ——log(‘ZnZ D % (¢ —ﬁK))
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Parameter Tying A

m Often, when we have too many parameters, we tie
together one degree of freedom to simplify the
problem at hand. This is called parameter tying.

B In the case of the decision function of a Gaussian
classifier we tie together the covariance of the
different classes.

B In other words, we assume all classes have the

same covariance:
=2, forxk=12,...K

. Term independent of
m In that case: maximizing parameter

/\ 1 T
A= argmax(log( p(Q)) —— 5(5 -i.) ='(c-n,)
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Further Simplification N

B The 3" term also becomes simpler... . . f
- o\ -1/~ = Term independent o
(C _MK) 2 (C _MK) =% maximizing parameter.

Term constant for each

+ 0.2 " class and independent of
the input feature vector.

ATl  —=T—l— These two terms are
- MZZ '¢-¢'3 1MK'/\Iinear in C .
m If we look at the function we are trying to maximize,
i.e. the a-posteriori probability

. = argmax p(Q,) p(d[@,)

1 L 1 > =
= argmax log(p(QK )) — E(C - U, )Tz 1(6 — U, ))

we notice that it is linear in the components of c.
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General Form of Gaussian Decision Rule A

B Thus, when the class conditional probabilities are
normally distributed and have the same covariance 2
then the decision rule is of the form of a linear
equation: o

: A=argmaxd.c + b,

K

®m Why compute the mean and variance and not
directly recover the coefficients a_ and b,_of the

linear equation?

m One could do that, and then we have the more
general case of directly computing linear decision
boundaries.
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Distinct Covariances )

m If the covariance matrix of the class-conditional
probabilities varies among classes

2, =2, fork=12,..K, A=12,...Kand A=K

then the term ¢'2.¢ can not be ignored in the
maximizing function:

(¢-m) =)E-p )= ¢'=/¢ + =i,
- 0206 - 20,

B This means that the decision boundary is given by a
quadratic function.
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Summary A

m Using a Gaussian classifier involves computing, for
eachclass Q : p(Q ), u and X .

m All these quantities can be estimated from the
training data.

B These values are then used in the decision function:

1 1, _ e -
A= argmax(log(p(QK )) - Elog(‘ZnZKD = E(C ~a.) =NE -, ))
B The class that maximizes this function is then picked
as the class of the feature vector c.
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Remarks b

B There are two important issues that one should
keep in mind.

1. How good is my training data?

2. Are the feature vectors within each class truly

normally distributed?

= Classify assuming the normal distribution assumption holds.
If the system works, then the assumption was valid.

= Apply statistical tests that verify whether the normal
distribution assumption holds.

= Select feature extraction methods like PCA that generate
normally distributed features



