
Unsupervised Unstained Cell 
Detection using SIFT Keypoint 
Clustering and Laplacian Boundary 
Potential (2) 

Firas Mualla 

27.01.2014 

Pattern Recognition Lab (CS 5) 



27.01.2014   |   Firas Mualla   |   Pattern Recognition Lab (CS 5)   |   Unsupervised Cell Detection Approach 

Outlines 

● Reminder of our supervised cell detection system 

● Unsupervised approach 

● Evaluation 

● Conclusion & outlook 

2 



Reminder 



27.01.2014   |   Firas Mualla   |   Pattern Recognition Lab (CS 5)   |   Unsupervised Cell Detection Approach 

The system 
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Input SIFT keypoints Classification  

result 

SIFT Keypoint classifier 
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Hierarchical clustering 
Average 

End 
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So far! 

+ Fully automatic cell detection 

+ High detection rate 

+ High scores in scale-, orientation-, and illumination-invariance 

+ General design 

-  Needs training 
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Unsupervised approach 
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System overview 
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Blob type detection 
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Positive Negative 

or ? 

> 0.5 < 0.5 
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System overview 
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Mean scale computation 
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System overview 
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Smoothing 

● Image is smoothed with a Gaussian kernel. 

● Its standard deviation is the previous mean scale. 

● Applying SIFT again: 

● The new keypoints are more stable. 

● Their number is considerably less. 
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Keypoint clustering 

● K-means clustering 

● Clusters which correspond to 1D Otsu thresholding of the DOG 

values are used as initialization. 

● City-block distance measure 

● Modality-specific features: 

● DOG and score were used in phase contrast. 

● DOG and intensity were used in bright-field. 

● Applying SIFT again seems to have considerable effect on the result! 
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Cell keypoint clustering 

● Back to intuition: 

Cell SIFT keypoints Artificial inner and cross profiles 
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Sample inner profiles 
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Sample cross profiles 
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Boundary potential 

● Laplacian of Gaussian L of the smoothed image is used as boundary 

potential. 

● L(blob-type * L > 0) = 0,    (blob-type = +1 or -1) 

● L = |L| 

 

Image of CHO cells and its boundary potential  
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Training 

● Extract features which are invariant to profile length. 

● Currently we use max(L) along the extracted profile. 

● Use the extracted features to train a Bayesian classifier with 

Gaussian class conditional densities. 
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Cell keypoint  clustering 

 

● For each cell keypoint: 

● Find its K-nearest neighbors (K=3). 

● Classify the corresponding profiles using the Bayesian classifier. 

 

● Similar to the supervised approach: 

● Agglomerative hierarchical clustering 

● Linkage method: average 
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Evaluation 
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Bright-field 

● 16 images 

● Three cell lines 

● More than 3500 manually labeled cells 

● Ground truth type: border delineation 

 

 

Sf21 cells CHO cells L929 cells 
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Phase contrast 

● 11 images 

● One cell line 

● More than 1100 cells 

● Ground truth type: dot at each cell center 

 

 

HeLa cells 
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Results 
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Comparison with state-of-the-art: bright-field 
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One CHO image was used to train [1] and the rest of the CHO images 

were used for evaluating the three approaches 
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Comparison with state-of-the-art: phase contrast 
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Conclusions & outlook 
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Conclusions 

 

● We have an unsupervised approach which has competitive 

performance compared to supervised state-of-the-art approaches on 

bright-field and phase contrast microscopy. 

● Smoothing with mean image scale seems to provide:  

● Stable keypoints 

● Very good boundary potential between cells 

● Use extreme cases when you do not have ground truth. 
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Outlook 

 

● More features? 

● More clever inner/cross profile selection? 

● Bottleneck: Background / cell clustering  
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Thank you very much! 


