Texture Features

We want to analyze the local frequencies (often referred to as texture) in a given image.

- 1. Compute the Gabor filtered image $G(\lambda, \theta, \sigma)$ for an image *I* given
 - the wavelength of the cosine factor λ ,
 - the orientation θ,
 - and the standard deviation of the Gaussian kernel σ as

$$g(x,y,\lambda,\theta,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x'^2+y'^2}{2\sigma^2}}\cos(\frac{x'}{\lambda}),$$

where $x' = x \cos(\theta) + y \sin(\theta)$ and $y' = -x \sin(\theta) + y \cos(\theta)$. The pixels of $G(\lambda, \theta, \sigma)$ are then computed as the the convolution of the image with the kernel $g(x, y, \lambda, \theta, \sigma)$:

$$G(x, y, \lambda, \theta, \sigma) = \sum_{u} \sum_{v} I(u, v)g(x - u, y - v, \lambda, \theta, \sigma)$$

- 2. Vary the parameters λ , θ , and σ and discuss the effects on the image.
- 3. Think of applications for the Gabor filter.