Hough Transform

1 Hough Transform

- 1. Detect straight lines in an image using the Hough transform. Implement the following algorithm:
 - Input is an edge image E_h of dimension $M \times N$. $E_h(x, y) = 1$ if an edge is present and $E_h(x, y) = 0$ if no edge was detected at location x, y. Reuse the code of Exercise 2 or use cv: : Canny to obtain E_h . In order to detect lines, we regard every edge point as a candidate point for a line computed by

$$\rho = x\cos(\theta) + y\sin(\theta).$$

Note: $\rho \in [0, \sqrt{M^2 + N^2}]$, $\theta \in [0, \pi]$. With $\delta \rho$ and $\delta \theta$ we denote the step size, e.g. the resolution of the Hough parameter space.

- Compute the number of intervals *R* and *T* for sampling of ρ and θ using $\delta \rho$ and $\delta \theta$.
- Initialize the Hough space *H* with dimensions $R \times T$ and set each entry to 0.
- For each pixel $E_h(x, y) = 1$ and for $h = 1 \dots T$
 - compute

$$\rho_h = x\cos(h\cdot\delta\theta) + y\sin(h\cdot\delta\theta),$$

- determine the index $k = 1 \dots R$ which is closest to ρ_h ,
- and increment H(h, k) by one.
- Find all local maxima in H(h, k) where $H(h, k) > \tau$, where τ is a user-defined threshold.
- Output the detected edges, the final Hough space, and the detected lines as images.