Computer Vision Exercise 9

Camera Calibration and Stereo Systems

1 Simple stereo system and accuracy of stereo systems

Consider the stereo system as displayed on the right. O_{r} and O_{l} denote the optical centers of both camera systems. T is the baseline of the stereo system, i.e., the distance between the optical centers. P is a point which is projected onto its image point p_{r} in the right camera and p_{l} in the left camera. x_{r} and x_{l} denote the distance between the projections of P and the principal points of the cameras c_{r} and c_{l}. The depth Z of P is computed as $Z=f \frac{T}{d}$ where the disparity $d=x_{r}-x_{l}$.

1. Estimate the accuracy of the stereo system assuming that the only source of noise is the localization of corresponding points in the two images. Discuss the dependence of the error in depth estimation as a function of the baseline width and the focal length.
2. Using your solution to the previous exercise, estimate the accuracy with which features should be localized in the two images in order to reconstruct depth with a relative error smaller than 1%.
3. Check what happens if you compute the sum of squared differences (SSD)

$$
\psi_{\mathrm{SSD}}(u, v)=-(u-v)^{2},
$$

and the cross-correlation (CC)

$$
\psi_{\mathrm{CC}}(u, v)=u v,
$$

between an arbitrary pattern and a perfect black pattern over a window W,

$$
\psi=\sum_{W} \psi(u, v)
$$

Discuss the effect of replacing the definition of cross-correlation with the normalized crosscorrelation (NCC)

$$
\psi_{\mathrm{NCC}}(u, v)=\frac{(u-\bar{u})(v-\bar{v})}{N_{u} N_{v}}
$$

where $\bar{u}=\sum_{W} u, \bar{v}=\sum_{W} v, N_{u}=\sqrt{\sum_{W} u^{2}}$, and $N_{v}=\sqrt{\sum_{W} v^{2}}$. Discuss the advantages of NCC vs. CC vs. SSD. Can you precompute parts of $\psi_{\text {NCC }}$ to speed up the computation?
4. Design a correlation-based method that can be used to match edge points.

