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Filtering 

n  Most of the images we capture are noisy 
n  Goal: 
    Noisy Imagein             Filter           Clean Imageout 
n  This notion of filtering is more general and can be 

used in a wide range of transformations that we 
may want to apply to images. 

        Imagein                 Filter             Imageout 

n  Mathematically, a filter H can be treated as a 
function on an input image I: 

n  Note: We use the terms filter and transformation interchangeably 

€ 

H(I) = R
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Convolution 

n  If a transformation (or filter) is linear shift-invariant 
(LSI) then one can apply it in a systematic manner 
over every pixel in the image. 

n  Convolution is the process through which we 
apply linear shift-invariant filters on an image. 

               I             LSI Filter H             R 
n  Convolution is defined as: 

 
    and is denoted as: 

€ 

R(x,y) = H(x − i,y − j)I(i, j)
j=−∞

∞

∑
i=−∞

∞

∑

IHR *=
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Another Look at Convolution 

n  Filtering often involves replacing the value of a pixel 
in the input image F with the weighted sum of its 
neighbors. 

n  Represent these weights as an image, H 
n  H is usually called the kernel 
n  The operation for computing this weighted sum is 

called convolution. 

n  Convolution is: 
§  commutative, 
§  associative, 
§  distributive, 

IHR *=

HIIH ** =
IHHIHH *)*()*(* 2121 =

)*()*(*)( 2121 IHIHIHH +=+
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Edges 

n  An edge is: 
§  A significant change in intensity values. 
§  Related to object boundaries, patterns (brick wall), shadows, etc. 
§  A property attached to each pixel. 
§  Calculated using the image intensities of neighboring pixels.  

n  Examples of 1D Edges 

50  50  50  50  100  100  100  100     step edge	



50  50  50  50  100  100    50    50      roof edge	



50  50  60  70    80    90  100  100     ramp edge	
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Edge Detection Example 

Original images Images after edge detection 
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Edge Detection Steps 

1.  Noise Smoothing 
•  Suppress as much noise as possible without destroying edge 

information.  

2.  Edge Enhancement 
•  Design a filter that gives high responses at edges and low 

response at non-edge pixels. 

3.  Edge Localization 
•  Decide which high responses of the edge filter are responses to 

true edges and which ones are caused by noise or other artifacts. 
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Types of Edge Detection 

n  Detecting edges is equivalent to detecting changes 
in intensity values. 

n  How do we detect change? 
          Differentiation 
n  Image is a 2D function 
     => partial derivative in x 
       & partial derivative in y 
n  If we take the 1st derivative  we have Gradient-

based edge detectors. 
n  If we take the 2nd derivative we have Laplacian 

edge detectors (look for zero-crossings). 
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Gradient-Based Edge Detection 

n  The gradient vector G(x,y), at an image pixel I(x,y) is: 

n  The gradient vector points in the direction of maximum change. 
n  Its orientation (its angle with the x-axis) is given by: 

n  Its magnitude is given by: 

    or its approximations: 

),(),(),( 22 yxIyxIyx yx +=G

)),(),,((),(,),(),( yxIyxI
y
yxI

x
yxIyx yx=⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
∂

∂
=G

),(),(),( yxIyxIyx yx +≈G
)),(),,(max(),( yxIyxIyx yx≈G

⎟
⎠
⎞

⎜
⎝
⎛= −

),(
),(tan 1

yxI
yxI

x
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Gradient Vector Image 

n  An image showing 
the gradient 
vectors 
themselves. 

n  The length of the 
gradient vector 
corresponds to its 
magnitude. 
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Implementation 

n  By definition: 

 
 
n  In the discrete world differentiation is approximated by finite 

differencing: 

n  But since our smallest step is           : 

],1[],[/),(),( yxIyxIxyxIyxIx −−=∂∂=

]1,[],[/),(),( −−=∂∂= yxIyxIyyxIyxI y

€ 

∂I(x,y) /∂x = lim
ε→0

I(x,y)
ε

−
I(x −ε,y)

ε

& 

' 
( 

) 

* 
+ 

€ 

Ix (x,y) = ∂I(x,y) /∂x ≈ I[x,y]− I[x −Δx,y]
Δx

€ 

Δx =1
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Implementation (continued) 
 

n  We can express this operation in a kernel form: 
 
 

n  To make it less susceptible to noise we use the values of two 
consecutive rows or columns. 

n  These kernels, however, evaluate an approximation of the 
derivative at half-pixel locations,                    and 

€ 

Hy =
−1
+1
# 

$ 
% 

& 

' 
( 

€ 

Hx = −1 +1[ ]

€ 

Hx =
−1 +1
−1 +1
# 

$ 
% 

& 

' 
( 

€ 

Hy =
−1 −1
+1 +1
# 

$ 
% 

& 

' 
( 

],2/1[ yxIx − ]2/1,[ −yxI y
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Roberts Edge Detector 
 

n  To overcome this unbalanced “half-pixel” location problem, 
Roberts suggested two other masks (kernels) for edge 
detection: 

n  These kernels give the maximal response to edges that run at 
45˚ angles to the pixel grid.  

n  These kernels, evaluate an approximation of the derivative at 
more “balanced” half-pixel locations,                             and 

€ 

HRx =
+1 0
0 −1
# 

$ 
% 

& 

' 
( 

€ 

HRy =
0 +1
−1 0
# 

$ 
% 

& 

' 
( 

€ 

Iy[x −1/2,y −1/2]

€ 

Ix[x −1/2,y −1/2]
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Roberts Cross Operator 

n  By convolving an image with        and        one obtains 
estimates of the gradient: 

n  The edge orientation for the Roberts edge detector is given by: 

n  Its magnitude is given by: 

    or its approximations: 
),(),(),( 22 yxIyxIyx yx +=G

€ 

G(x,y) = (Ix (x,y),Iy (x,y))

),(),(),( yxIyxIyx yx +≈G
)),(),,(max(),( yxIyxIyx yx≈G

€ 

θ = tan−1 Iy (x,y) Ix (x,y)
$ 

% 
& 

' 

( 
) + 14π

€ 

HRx

€ 

HRy

€ 

Iy = HRy * I

€ 

Ix = HRx * I
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Implementation (continued) 
 

n  However, we are still computing a approximation of the 
derivative in a “half” position,                       ,   

n  Quick Solution: Increase the implied       to   

n  Then the masks approximating differentiation via finite 
differencing change from  

 

 
 to 

 

 

€ 

Hy =
−1
+1
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$ 
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Hx = −1 +1[ ]

€ 

Ix[x −1/2,y −1/2]

€ 

Iy[x −1/2,y −1/2]

€ 

Δx = 2

€ 

Δx

€ 

Hy =

−1
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Hx = −1 0 1[ ]
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Common Edge Masks 

n  Prewitt edge detection masks 

n  Sobel edge detection masks 

€ 

Px =

−1 0 +1
−1 0 +1
−1 0 +1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

€ 

Py =

−1 −1 −1
0 0 0
+1 +1 +1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

€ 

Sx =

−1 0 +1
−2 0 +2
−1 0 +1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

€ 

Sy =

−1 −2 −1
0 0 0
+1 +2 +1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
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Gradient Edge Detection Process 

n  Given an input image I, the gradient-based edges 
are computed as follows: 

1.  Compute  
2.  Compute 
3.  Compute                using your favorite method 

4.  If                    
    then pixel (x,y) is an edge-pixel (edgel) 
           compute the angle θ for that pixel.	



 

IHI xx *=
IHI yy *=

),( yxG
tyx ≥),(G
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Gradient Edge Detector Example 

Original image Image after edge detection 
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Canny Edge Detector 

n  It is a multi-stage (multi-pass) edge detector. 
n  It studies the effects of noise in a systematic way. 
n  Developed in 1986 by Canny as an optimal edge 

detector. 
n  The original work includes: 

§  a detailed description of how and why edge detection works. 
§  a proof of optimality 

n  It is based on gradient edge detection. 



 Page 20  Page 20 

Elli Angelopoulou Edge Detection 

Optimality Criteria 

n  According to Canny, an “optimal” edge detector 
should satisfy the following optimality criteria. 

1. Good detection: find as many real edges as 
possible 

2. Good localization: estimate the position of the edge 
as close as possible to its true location in the image. 

3. Minimal (Single) response: detect each edge only 
once (no ghost or ringing effects). 
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Optimality Criteria 

n  According to Canny, an “optimal” edge detector 
should satisfy the following optimality criteria. 

1. Good detection: find as many real edges as 
possible 

2. Good localization: estimate the position of the edge 
as close as possible to its true location in the image. 

3. Minimal (Single) response: detect each edge only 
once (no ghost or ringing effects). 
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Good Detection 

n  In order to find as many real edges as possible, one 
needs to minimize the probability of: 
1.  False positives (detection of spurious edges caused by noise) 
2.  Missed real edges 

n  This means that one needs to maximize the Signal 
to Noise Ratio (SNR). 

n  Let        be the filter,       be the Gaussian noise with 
mean      and       be the input signal (image). 

n  An image with a single ideal step edge, would be:  
€ 

H(x)

€ 

n(x)

€ 

I(x)

€ 

I(x) =
0 x < 0
A x ≥ 0
# 
$ 
% € 

n0
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SNR 

n  The edge response is: 

n  The noise RMS response  is: 

n  The corresponding SNR is: 

 

n  Thus, a filter which satisfies the good-detection 
criterion should maximize this SNR.   

€ 

Re (0) = I(−x)H(x)dx
−k

k

∫ = A H(x)dx
−k

0

∫

€ 

RMSn (x) = n0 H 2(x)dx
−k

k

∫

€ 

SNR =

A H(x)dx
−k

0

∫

n0 H 2(x)dx
−k

k

∫



 Page 24  Page 24 

Elli Angelopoulou Edge Detection 

Optimality Criteria 

n  According to Canny, an “optimal” edge detector 
should satisfy the following optimality criteria. 

1. Good detection: find as many real edges as 
possible 

2. Good localization: estimate the position of the edge 
as close as possible to its true location in the image. 

3. Minimal (Single) response: detect each edge only 
once (no ghost or ringing effects). 
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Good Localization 

n  The goal is to have the location of the detected 
edges as close as possible to the true edges. 

n  Where is the edge localized? At the maximum of the 
filter response. 

n  Thus, in a similar manner to good detection, we 
want to maximize: € 

" R e (x) + " R n (x) = 0

€ 

LOC =
A " H (0)

n0 " H 2(x)dx
−k

k

∫
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Optimality Criteria 

n  According to Canny, an “optimal” edge detector 
should satisfy the following optimality criteria. 

1. Good detection: find as many real edges as 
possible 

2. Good localization: estimate the position of the edge 
as close as possible to its true location in the image. 

3. Minimal (Single) response: detect each edge only 
once (no ghost or ringing effects). 
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Minimal Response 

n  The edge detector should return only one pixel for 
each true edge point. 

n  Consider a true edge at a pixel p surrounded by 
noise edges. 

n  Idea: Discard edges that are within some small 
distance d from another edge. 

n  How can this be done in practice? Use a large edge 
kernel (not 3x3 but 11x11 for example). 

n  Ooops!!! Large kernels are bad for localization. 

n  Optimization: Maximize SNR and LOC subject to the 
single response constraint. 
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Optimality Criteria 

n  Canny formally defined an optimal edge detector as 
one that exhibits. 
1. Good detection 
2. Good localization 
3. Minimal (Single) response 

n  He expressed the formation of an optimal edge 
detector as an optimization problem. 

n  In practice, the optimal Canny edge detector is 
implemented as a 2-step process: 
1.  Non-maximum suppression 
2.  Hysteresis thresholding 
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Non-Maximum Suppression 

n  A single real edge may appear as having wide ridges 
around it.  

n  Non-maximum suppression thins such ridges down-to 
1-pixel wide edges. 

n  Non-maximum suppression requires two input images: 
§  the edge strength image       

§  the edge orientation image     

n  Edge orientations are quantized to a set of specific 
edge orientations    , for example:  € 

Es

€ 

Eo

€ 

d1 = 0° d2 = 45° d3 = 90° d4 =135°

€ 

dk
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Non-Maximum Suppression Algorithm 

For each pixel (i,j) 
1.  Find the    that best approximates  
2.  Examine the two neighbors           and            along 

the direction    . 
3.  If                            or  

else € 

(Es(i, j) < Es(n1(i, j))) € 

Eo(i, j)

€ 

dk

€ 

dk

€ 

n1(i, j)

€ 

n2(i, j)

€ 

(Es(i, j) < Es(n2(i, j)))

€ 

IN (i, j) = 0

€ 

IN (i, j) = Es(i, j)
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Non-Maximum Suppression Example 

Edges are quantized to 0˚ (yellow), 45˚ (green), 90˚ (blue), 135˚ (red). 
Non-maximum suppression addresses the minimal response criterion.	
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Hysteresis Thresholding 

n  Non-maximum suppression examines parallel edges in 
small neighborhood and eliminates the ones with the 
smaller (not max.) gradient magnitude. 

n  Even after non-maximum suppression,     still contains 
edges that are just responses to noise. 

n  Use thresholding to eliminate noisy responses. 
n  What threshold value? 

§  too low: not all the noise is eliminated 

§  too high: real edge are removed 

n  Canny’s solution: Use 2 thresholds  

€ 

IN
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Main Idea of Hysteresis Thresholding 

n  Assumption: Important edges should form continuous 
curves in the image. 

n  Idea: Follow a faint direction of a given line and discard 
a few noisy pixels that do not constitute a line but have 
produced large gradients.  

n  Do this by using a high threshold.  
n  After the high thresholding we are left with edges which 

are most probably real edges.  
n  Do a 2nd pass tracing (following) the curves. During the 

tracing use the lower threshold. If an edge strength is 
larger than the lower threshold it is a real edge. 
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Hysteresis Thresholding Algorithm 

Let     and    be the low threshold and high threshold values, respectively. 
For each non-zero pixel (i,j) in     and scanning in a fixed order (i.e. follow a 
contour in a clockwise manner) 
1.  Locate the next unvisited pixel              such that   
2.  Start from             .  
Follow the chains of connected      pixels in both directions perpendicular to 
the edge gradient, as long as                   . 
Mark each such      as visited.  
Save all such visited pixel locations in a list that represents a connected 
contour. 
3.  Create a new output image      . Set  all pixels to 0.  
4.  Traverse each contour list.  
As you traverse the contour list, set each pixel location (i,j) on that list to 1, 
i.e.                 , or to the edge strength  

€ 

tl

€ 

IN (i, j)

€ 

IN (i, j) > th

€ 

IH (i, j) = 0

€ 

IN

€ 

th

€ 

IN (i, j)

€ 

IN

€ 

IN (i, j) > tl

€ 

IN

€ 

IH

€ 

IH (i, j) = ES (i, j)
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Canny Example 

Original image Step 1: Conversion to grayscale and 
smoothing with 5x5 Gaussian 

Step 2: Sobel edge detector – edge 
magnitude image 

Step 2: Sobel edge detector – edge 
orientation image 

Step 3: Non-maximum suppression Step 4: Hysteresis thresholding      
final results 
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Canny Example 2 

Original image Step 1: Conversion to grayscale Step 2: Smoothing followed by 
Sobel edge detection 

Step 3: Non-maximum suppression Step 4: Hysteresis thresholding - final result 



 Page 37  Page 37 

Elli Angelopoulou Edge Detection 

Sobel vs. Canny 

 
 
 
 
 
 
 
 

  
Sobel	

 Canny	
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Roberts vs. Sobel  

 
 
 
 
 
 
 
 

  
Roberts	

 Sobel	
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Roberts vs. Canny 

 
 
 
 
 
 
 
 

  
  
  

Roberts	

 Canny	


σ = 1, tl=1 , th= 255	
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Canny Edge Detector 

 
 
 
 
 
 
 
 

  
  
  

Canny	


σ = 2, tl=1 , th= 128	



Canny	


σ = 1, tl=220 , th= 255	



Canny	


σ = 1, tl=1 , th= 128	
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Second Order Derivative 

n  Another way to detect an extremal first derivative is 
to look for a zero-valued 2nd derivative. 

n  A popular calculus tool that gives the magnitude of 
change in a bivariate function without direction 
information is the Laplacian. 

n  Note that the result of the Laplacian is a scalar. 

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+

∂
∂

=∇ 2

2

2

2
2 ),(),()),((

y
yxI

x
yxIyxI
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Laplacian Implementation 

n  Again differentiation is approximated by finite differencing. 

n  Written as a mask, we get: 

xyxIxyxI x ∂∂=∂∂ /)),((/),( 22

xyxIyxI ∂−−∂= /]),1[],[(
xyxIxyxI ∂−∂−∂∂= /]),1[(/]),[(

]),1[],[(]),[],1[( yxIyxIyxIyxI −−−−+=

],1[],[2],1[ yxIyxIyxI −+−+=

€ 

Hx=
2Ix =

0 0 0
1 −2 1
0 0 0

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
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Laplacian Implementation 

n  Similarly, for the 2nd partial 
derivative with respect to y, 
we get: 

n  By adding the two together, 
we get the Laplacian mask: 

n  If we want to use all 8 
neighbors, we can use: € 

HLap=2Ix+
2Iy =

0 1 0
1 −4 1
0 1 0

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

€ 

Hy=
2Iy =

0 +1 0
0 −2 0
0 +1 0

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

€ 

HLap =

1 4 1
4 −20 4
1 4 1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
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Simple Laplacian Example 

n  When we convolve an image that contains a significant change in 
values (i.e. edge) with a Laplacian kernel, we get a new image with 
negative values on one side of the edge and positive values on the 
other side of the edge. 

n  For example: 
            Input image                                Image after the Laplacian 

8888222222
8888222222
8888222222
8888222222
8888222222
8888222222

0006600000
0006600000
0006600000
0006600000
0006600000
0006600000

−

−

−

−

−

−

zero crossing 
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Laplacian of Gaussian 
n  The computation of 2nd order derivatives is very sensitive to 

noise. 
n  Solution: Smooth first the image I with a Gaussian HGauss and 

then apply the Laplacian HLap on the image. 

n  Convolution is associative. 

n  The combined filter (HLap * HGauss) is nothing more than 
computing the Laplacian of the Gaussian (LoG):  

)*(* IHHR GaussLapLapEdge =

IHHR GaussLapLapEdge *)*(=

)(e)),((
222 2/)((22 σyx

auss yxG +−∇=∇

)(e)( 222 2/)((
4

222
σ

σ
σ yxyx +−−+

=
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n  The  LoG function,                       looks like a “mexican hat”. 
 

LoG Kernel 

 
n                         can also 

be approximated by a 
convolution kernel:  

€ 

HLoG =

0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0
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% 
% 
% 
% 
% 
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( 
( 
( 
( 
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)),((2 yxGauss∇

)),((2 yxGauss∇
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σ = 2	



contrast=1	

 contrast=4	



Examples of LoG Zero Crossings 

σ = 4	
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Smoothing and Differentiation 

n  The concepts of first smoothing and then differentiating 
generalizes to all edge detection methods (both 1st and 
2nd order derivative methods). 

n  Convolution is associative, so we can always create a 
combined filter and convolve (filter) the image only once. 

                             where 

n  By using different degrees of smoothing (Gaussian with 
different σ values or mean filters of different sizes, i.e. 
3x3, 5x5, 7x7, etc.) we can obtain a hierarchy, a 
pyramid, of images with different levels of detail. 

IHIHHIHHR smoothedgesmoothedge **)*()*(* ===

smoothedge HHH *=
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Different Scales 

n  The scale of the smoothing filter affects the 
derivative estimates as well as the semantics of the 
recovered edges 

No smoothing 3x3  filter 7x7  filter 
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Different Scales 

Original image Fine scale, high threshold 

Coarse scale, high threshold Coarse scale, low  threshold 
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Gaussian Pyramid 

n  Gaussian Pyramid (also known as a lowpass 
pyramid) is a hierarchy of low pass filtered versions 
of the original image. 

n  Successive layers correspond to lower frequencies 
(larger σ). 

n  Each successive layer is also a sub-sampled version 
of the previous level. Sub-sampling is typically by a 
factor of 2 in each coordinate direction.   

n  It allows us to analyze the image at different spatial 
and frequency resolutions. 

n  It is a form of multi-resolution analysis. 
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Gaussian Pyramid Example 



 Page 53  Page 53 

Elli Angelopoulou Edge Detection 

Construction of a Gaussian Pyramid 

n  Let    be the level of the Gaussian pyramid. Then: 

where    is typically set to 2. 
n  This function is also known as the REDUCE operation: 

n  A Gaussian pyramid is then recursively constructed:   

€ 

l

€ 

Gl (x,y) = HGauss(m,n)
n=−k

k

∑
m=−k

k

∑ Gl−1(2x + m,2y + n)

€ 

k

€ 

Gl = REDUCE(Gl−1)

€ 

Gl+1 = REDUCE(Gl )

€ 

G0 = I
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Gaussian Pyramid Facts 

n  Each pixel at level    contains the local weighted 
average of the neighborhood of the corresponding 
pixel at previous level        of the Gaussian pyramid. 

n  In such a pyramid, a coarse level,   , representation 
predicts the appearance of the immediate finer 
level,       .    

n  One can use an upsampling (EXPAND) operation to 
reconstruct an approximation of the immediate finer 
level        from the coarse level   . 

€ 

l

€ 

l −1

€ 

l

€ 

l −1

€ 

l −1

€ 

l
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Expand Operation 

n  The following operation produces an approximation 
(a smoothed version) of level    using the information 
stored in a coarser level of the Gaussian pyramid: 

where    is typically set to 2. 

n  This function is also known as the EXPAND operation: 
 

€ 

l

€ 

Gl (x,y) = 4 HGauss(m,n)
n=−k

k

∑
m=−k

k

∑ Gl+1(
x −m
2

, y − n
2
)

€ 

k

€ 

Gl = EXPAND(Gl+1)
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Gaussian Pyramid Example 

Figure from the original paper: E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, 
“Pyramid Methods in Image Processing,” RCA Engineer, Nov/Dec 1984, pp. 33-41. 
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Successive Smoothing 

Figure from the original paper: E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, 
“Pyramid Methods in Image Processing,” RCA Engineer, Nov/Dec 1984, pp. 33-41. 

Fig. 2b. Levels of the Gaussian pyramid expanded to the size of the original image. 
The effects of lowpass filtering are now clearly apparent. 
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Gaussian Pyramid Example 
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Laplacian Pyramid 

n  Given such an EXPAND operation, one can reproduce 
the immediate finer level    from the coarse level      
by just storing the differences between two 
successive levels. 

n  One can then build another type of pyramid based on 
these difference images, called the Laplacian 
pyramid. 

 

€ 

l

€ 

Δ = Ll (x,y) =Gl (x,y) −EXPAND(Gl+1(x,y))€ 

l +1

€ 

Gl (x,y) = Δ + EXPAND(Gl+1(x,y))
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Laplacian Pyramid Example 
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Construction of the Laplacian Pyramid 

n  The Laplacian Pyramid is also known as a bandpass 
pyramid. 

 

where     is the highest level of the pyramid. 

n  It is a complete image representation. The steps used 
to construct the pyramid can be reversed to recover 
the original image exactly. Thus, the Laplacian 
pyramid can be used for image compression. 

 

€ 

Ll (x,y) =Gl (x,y) −EXPAND(Gl+1(x,y))

€ 

N

€ 

G0 = Ll
l
∑

€ 

LN (x,y) =GN (x,y)
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Laplacian Pyramid Example 

Figure from the original paper: E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, 
“Pyramid Methods in Image Processing,” RCA Engineer, Nov/Dec 1984, pp. 33-41. 
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Laplacian Pyramid Example 
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Laplacian Pyramid Example 

Figure from the original paper: E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, 
“Pyramid Methods in Image Processing,” RCA Engineer, Nov/Dec 1984, pp. 33-41. 

Fig. 5. Pyramid data compression. The original image represented at 8 bits per pixel is shown in (a). The node values of tbe 
Laplacian pyramid representation of this image were quantitized to obtain effective data rates of 1 b/p and 1/2 b/p. Reconstructed 
images (b) and (c) show relatively little degradation. 
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Laplacian vs. Gaussian Pyramid 

n  At each level, a Gaussian filtering and a Laplacian 
filtering are performed respectively. The standard 
deviation σ increases at each level.  

Figure from the original paper: E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, 
“Pyramid Methods in Image Processing,” RCA Engineer, Nov/Dec 1984, pp. 33-41. 
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Image Sources 

1.  “Image with salt & pepper noise”, Marko Meza. 
2.  “Set of images of Roberts vs. Canny vs. Sobel”, Hypermedia Image Processing Reference at the University of Edinburgh. 
3.  “Nonmaximum suppresion” from Wikipedia Commons. 
4.  Examples of Canny’s non-maximum suppression and hysteresis thresholding by Christopher Jones, http://

people.virginia.edu/~cmj7gh/classes/vision/JonesAssignment1/WRITEUP.html 
5.  “LoG plots”, Simon Yu Ming, http://hi.baidu.com/simonyuee/blog/item/446a911bf43cc91c8618bf8f.html 
6.  Many of the edge detection and the pyramid images are from the slides by D.A. Forsyth, University of California at Urbana-

Champaign. 
7.  The pyramid images of the female face are from Technion – Israel Institute of Technology, http://www.cs.technion.ac.il/

~ronrubin/Projects/fusion/index.html 


