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Noise Sources 

n  Photon noise: variation in the 
#photons falling on a pixel per 
time interval T. 

n  Saturation: each pixel can only 
generate a limited amount of 
charge. 

n  Blooming: saturated pixel can 
overflow to neighboring pixels. 
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Noise Sources - continued 

n  Thermal noise: heat can free 
electrons and generate a response 
when there is no real signal. 

n  Electronic noise. 

n  Burned pixels.  

n  Black is not black. 

n  Keep in mind: Camera response 
may not be linear over the number 
of photons falling on a surface 
(camera gamma)   
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Detector Noise 

n  Source of noise: the discrete nature of radiation, i.e. 
the fact that each imaging system is recording an 
image by counting photons. 

n  Can be modeled as an independent additive noise 
which can be described by a zero-mean Gaussian. 
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Salt and Pepper Noise 

n  A common form of noise is caused by data drop-out 
noise. 

n  It is also known as commonly referred to as 
intensity spikes, speckle, or salt and pepper noise. 

n  Sources of error: 
§  Errors in the data transmission.  
§  Burned pixels: the corrupted pixels are either set to the maximum 

value (which looks like snow in the image) or are set to zero 
(“peppered” appearance), or a combination of the two. 

§  Single bits are flipped over. 

n  Isolated/localized noise. It only affects individual 
pixels. 
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Filtering 

n  Most of the images we capture are noisy. 
n  Goal: 
    Noisy Imagein             Filter           Clean Imageout 
n  This notion of filtering is more general and can be 

used in a wide range of transformations that we 
may want to apply to images. 

        Imagein                 Filter             Imageout 

n  Mathematically, a filter H can be treated as a 
function on an input image I: 

n  Note: We use the terms filter and transformation interchangeably. 

€ 

H(I) = R
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Linear Transformation 

n  A transformation H is linear if, for any inputs I1(x,y) 
and I2(x,y) (in our case input images), and for any 
constant scalar α we have:   

 
   and 

n  This means: 
§  Scaling of the input corresponds to scaling of the output. 
§  Filtering an additive image is equivalent to filtering each image 

separately and then adding the results.  

)),(()),(( 11 yxIHyxIH αα =

)),(()),(()),(),(( 2121 yxIHyxIHyxIyxIH +=+
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Shift-Invariant Transformation 

n  A transformation H is shift-invariant if for every 
pair (x0, y0) and for every input image I(x,y), such 
that  

   we get 

n  This means that the filter H does not change as we 
shift it in the image (as we move it from one position 
to the next). 

 

),()),(( yxRyxIH =

),()),(( 0000 yyxxRyyxxIH −−=−−



 Page 9  Page 9 

Elli Angelopoulou Noise, Filtering and Smoothing 
 

Convolution 

n  If a transformation (or filter) is linear shift-invariant 
(LSI) then one can apply it in a systematic manner 
over every pixel in the image. 

n  Convolution is the process through which we 
apply linear shift-invariant filters on an image. 

               I             LSI Filter H             R 
n  Convolution is defined as: 

 
    and is denoted as: 
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Another Look at Convolution 

n  Filtering often involves replacing the value of a pixel 
in the input image F with the weighted sum of its 
neighbors. 

n  Represent these weights as an image, H 
n  H is usually called the kernel 
n  The operation for computing this weighted sum is 

called convolution. 

n  Convolution is: 
§  commutative, 
§  associative, 
§  distributive, 

IHR *=

HIIH ** =
IHHIHH *)*()*(* 2121 =

)*()*(*)( 2121 IHIHIHH +=+



 Page 11  Page 11 

Elli Angelopoulou Noise, Filtering and Smoothing 
 

Smoothing via Simple Averaging 

n  One of the simplest filters is the mean filter: 

n  In this case,  

n  It is used for removing image noise, i.e. for smoothing. 

Original image Image after mean filtering (25x25 kernel)  
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Gaussian Smoothing 

n  Gaussian also better 
approximates the 
behavior of a defocused 
lens. 

n  Idea: Use a weighted average. Pixels closest to the 
central pixel are more heavily weighted. 

n  The Gaussian function has exactly that profile. 
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n  To build a filter H, whose weights resemble the 
Gaussian distribution, assign the weight values on 
the matrix H according to the Gaussian function: 

 

Isotropic Gaussian Filter 

€ 

H(i, j) = e−( i
2 + j 2 ) / 2σ 2

€ 
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' n  Small σ, almost no effect, weights at 

neighboring points are negligible. 
n  Large σ, blurring, neighbors have almost the 

same weight as the central pixel. 
n  Commonly used σ values: Let w be the size 

of the kernel H. Then σ=w/5.  
    For example for a 3x3 kernel, σ=3/5=0.6 
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Gaussian Smoothing Example 

n  Compared to mean filtering, Gaussian filtering 
exhibits no “ringing” effect. 

Original image Image after Gaussian filtering (25x25 kernel) 

* = 
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“Ringing” effect 

A close look at the frequency response of the two filters show that: 
compared to Gaussian filtering, mean filtering exhibits oscillations 

Original image Image after Gaussian 
filtering (25x25 kernel) 

Image after Mean 
filtering (25x25 kernel) 
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The Effect of σ	


n  Different σ values affect the amount of blurring, but 
also emphasize different characteristics of the 
image. 
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Non-Linear Smoothing 

n  The median filter considers each pixel in the image 
in turn and looks at its nearby neighbors to decide 
whether or not it is representative of its 
surroundings.  

n  It replaces a pixel value with the median of all pixel 
values in the neighborhood. 

n  It is a relatively slow filter, because it involves 
sorting. 

n  Can not be implemented via convolution. 
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Smoothing Examples 

Original image corrupted 
by a zero mean Gaussian 
noise with σ=8.  

Image after 5x5 Mean 
filtering 

Image after 5x5 Gaussian 
filtering 
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Mean Filter 

Original image 
Image after applying 
3 times 3x3 Mean 
filtering 

Image after 3x3 
Mean filtering 

Image after 7x7 
Mean filtering 

n  Mean filtering is sensitive to outliers.  
n  It typically blurs edges. 

n  It often causes a ringing effect.  
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Gaussian Filtering and Salt & Pepper Noise 

Original image Image after 5x5 
Gaussian filtering, 
σ=1.0 

Image with salt-pepper 
noise (1% prob. that a 
bit is flipped) 

n  Gaussian filtering works very well for images affected by 
Gaussian noise. 

n  It is not very effective in removing Salt and Pepper noise. 
Small σ values do not remove the Salt & Pepper noise, while 
large σ values blur the image too much.   

Image after 9x9 
Gaussian filtering, 
σ=2.0 
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Gaussian Filtering and Salt & Pepper Noise 

Original image 

After 5x5 Gaussian filter, σ=1.0 

Image with salt-pepper 
noise (1% prob. that a 
bit is flipped) 

After 9x9 Gaussian filter, σ=2.0 

After 3x3 mean filtering After 7x7 mean filtering 
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Median Filtering and Salt & Pepper Noise 

Original image Image after applying 
3 times 3x3 Median 
filtering 

Image after 3x3 
Median filtering 

Image with salt-pepper 
noise (5% prob. that a 
bit is flipped) 

Image after 7x7 
Median filtering 

n  Median filtering preserves high spatial frequency details. 
n  It works well when less than half of the pixels in the smoothing 

window have been affected by noise. 
n  It is not very effective in removing Gaussian noise.  
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Non-Local Means 

n  The output pixel is a weighted average of all the image 
pixels. 

 where N is the set of all pixel positions,              is a pixel 
position,                     and                       . 

n  The weight assigned to each pair of pixels depends on the 
similarity of the grey values in the neighborhood   
centered around each of the two pixels:  

 

 where                                  is the Euclidean distance 
weighted by a Gaussian function of standard deviation σ.  
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Examples of Weight Values 

n  In this figure, the original image is on the left and the weights 
for the central pixel (white dot) are shown on the right. 
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Example of Non-Local Means 

Left figure: Denoising using from left to right and from top to bottom 
Gaussian filter, anisotropic filter, total variation denoising, neighborhood 
filtering and non-local means.  
Right figure: The original picture an the differences between the denoised 
and the original image for each of the methods. 
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Non-Local Means Example 2 
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Image Sources 

1.  “Image with salt & pepper noise”, Marko Meza. 
2.  Many of the smoothing and edge detection images are from the slides by D.A. Forsyth, University of Illinois at Urbana-

Champaign. 
3.  The examples in slides 18-21 are courtesy of R. Fisher, S. Perkins, A. Walker and E. Wolfart  
4.  Non-Local Means figures are from the paper A. Buades, B. Coll and J.-M. Morel, “A Non-Local Algorithm for Image 

Denoising,” Computer Vision and Pattern Recognition, 2005. 


