IMIP – Exercise Epipolar Geometry & Fundamental Matrix & Normalized Eight Point Algorithm

Yan Xia, Matthias Hoffmann Pattern Recognition Lab (CS 5)

Epipolar Geometry

Problem: Given an image point in the first view, where is the corresponding point in the second view?

- A point in one image "generates" a line in the other image
- This line is known as an epipolar line, and the geometry which gives rise to it is known as epipolar geometry

Epipolar line

Epipolar constraint

• Reduces correspondence problem to 1D search along an epipolar line

Fundamental Matrix

If x and x' are corresponding image points, then the fundamental matrix F is defined by
 x'^T F x = 0. (see lecture sl

(see lecture slides 11, 26)

• Epipolar lines:

- l' = Fx is the epipolar line corresponding to x
- $l = F^T x'$ is the epipolar line corresponding to x'

Computing Fundamental Matrix

• The basic relation is

 $x'^T F x = \mathbf{0}.$

• The equation for a pair of points, e.g., (x, y, 1) and (x', y', 1):

 $x'xf_{11} + x'yf_{12} + x'f_{13} + y'xf_{21} + y'yf_{22} + y'f_{23} + xf_{31} + yf_{32} + f_{33} = 0$

Gives an equation

$$(x'x, x'y, x', y'x, y'y, y', x, y, 1)$$
f = 0

where

$$\mathbf{f} = (f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33})^T$$

holds the entries of the fundamental matrix.

Computing Fundamental Matrix

Linear Solution

- We have a homogeneous set of equations Af = 0
- f can be determined only up to a scale, so there are 8 unknowns, and at least 8 point correspondences are needed
 → hence the name "8 point algorithm"
- The least square solution is the singular vector corresponding the smallest singular values of A
 - Take SVD: $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathrm{T}}$
 - Solution is last column of V

If f is computed linearly from 8 or more correspondences, singularity condition (det(F) = 0) does not hold.

SVD Method

- (i) SVD: $\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathrm{T}}$
- (ii) U and V are orthogonal, D = diag(r,s,t)
- (iii) $\mathbf{r} \ge \mathbf{s} \ge \mathbf{t}$
- (iv) Set $F' = U \operatorname{diag}(r,s,0) \mathbf{V}^{T}$
- (v) Resulting F' is singular

Problem: 8 point algorithm performs badly in presence of noise

Normalization of data (balancing)

- (i) Translate so centroid is at origin
- (ii) Scale so that RMS distance of points from origin is $\sqrt{2}$

(i) Translate so centroid is at origin

We first compute the centroid of the set of all points:

$$t_x = \frac{1}{N} \sum_{k=1}^{N} p_{x,k}^i, \qquad t_y = \frac{1}{N} \sum_{k=1}^{N} p_{y,k}^i,$$

where $t = (t_x, t_y)$ the centroid of the k=1,..., N points p_k^i

Then, we can center the points by

$$mc = p_k^i - t$$

(ii) Scaling

The distance of each new computed point to the origin (0,0)

$$dc = \sqrt{\sum (mc)^2}$$

dc divided by the number of tracked points, resulting in the average distance to the origin.

Then, we apply a scale factor *s*, to satisfy the criteria that the average distance of a point p from the origin is $\sqrt{2}$.

Finally, the normalized data can be computed by apply the transformation (c = 0 - ct)

$$T = \begin{pmatrix} s & 0 & -st_x \\ 0 & s & -st_y \\ 0 & 0 & 1 \end{pmatrix}$$

Compute Epipolar line and Epipole

Epipolar lines:

- l' = Fx is the epipolar line corresponding to x
- Assume l' = (a, b, c), then line equation is

$$ax + by + c = \mathbf{0}$$

 $x' = (x', y', \mathbf{1})$ lies on the line l'

Epipole: Fe = 0 (slide 27) \rightarrow *e is eigenvector with smallest eigenvalue*