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Eye Tracking

Definition:

Eye Tracking is the recording of the movement of the eye.

Use of eye tracking

• Optimize advertisements/websites/product label designs.

• User interface for disabled persons.

• Medical/ Psychological research

Both Apple and Google patented eye tracking applications in the year 2013.
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Eye Tracking

Source: www.eyegaze.com
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http://www.eyegaze.com/eye-tracking-research-analysis-human-interaction/


“Looks do matter” – visual attentional biases in adolescent
girls with eating disorders viewing body images

Eye tracking study by Horndasch et al.

Article by Horndasch et al.

• analyzed the gaze behavior of 42
adolescent girls with and without
eating disorders via eye tracking

• viewed pictures of underweight,
normal-weight and overweight
women
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http://www.psy-journal.com/article/S0165-1781(11)00813-4/abstract
http://www.psy-journal.com/article/S0165-1781(11)00813-4/abstract


“Looks do matter” – visual attentional biases in adolescent
girls with eating disorders viewing body images

Eye tracking study by Horndasch et al.

Article by Horndasch et al.

Conclusion of the article:

• patients with eating disorder fixated
more at unclothed body parts
compared to normal controls

• ”Index body parts” did not draw
visual attention of eating-disordered
patients to a greater extend then
that of healthy controls.
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Aims of this Thesis

• Literature overview of the fundamentals of the eye, eye tracking and eye
tracking principles.

• Literature overview over the feature extraction and selection.

• Development of the feature extraction for eye tracking and
implementation in the “Eye Tracking Tool”.

• Evaluation of the extracted features compared to the data of Horndasch
et al.
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Eye Tracking
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The Human Eye

Fig.: The human eye
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Eye Movements

There are four main eye movements:

• saccade
rapid change of the visual center

• fixation
visual tracking of a stationary object

• smooth pursuit
visual tracking of a moving object

• nystagmus
compensation of retinal movement

Fig.: Eye Muscles
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Camera-Based Eye Tracking

Basic principle:
Gaze tracking by detecting features of the eye e. g. corneal reflections. In this
case an infrared diode emits IR light that is reflected at several layers of the
eye. Each reflection is a function of the position of the eye and is recorded
with a camera.

Fig.: The four Purkinje images
Fig.: Positions of the first Purkinje image
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Experimental Setup - Theory
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Pattern Recognition Pipeline
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Fig.: The pipeline of pattern recognition by Niemann
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Data Recording

For the data recording a binocular infrared eye tracker based on the principle
of corneal reflection was used.

It recorded:
• position of the eye at a given time (waypoint)
• fixation and saccades
• pupil size at each waypoint

Fig.: Binocular eye tracker
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Pre-processing

Done by both the eye tracker and the “Eye Tracking Tool”

• Eye tracker assigns gaze direction, pupil size and time and exports the
data.

• The “Eye Tracking Tool” reads the data and can apply the following
steps.
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Pre-processing (cont.)

Region of Interest (ROI)
• elliptical or polygonial shaped
• defined by the user in the “Eye Tracking Tool”
• 2 sets of ROI used for evaluation

Fig.: Body part ROI set Fig.: clothed-unclothed ROI set
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Pre-processing (cont.)

Area of ROIs
Calculation of the area of the ROIs
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Pre-processing (cont.)

Fixation in ROIs
Calculation of the fixation time in a single ROI
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Feature Extraction

Extracted Features were:

• Relative time per area (RTPA)
Fixation time in a ROI divided by its area

• Region of interest switch (ROI switch)
Number of fixation changes between ROIs

• Pupil size
Maximal pupil size within each ROI
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Principal Component Analysis

General Concept:

• reduce the dimensionality of the data, which consists of a large number
of interrelated features.

• keep the variation and the information.

• Reform the data into new uncorrelated variables, the principal
components.

The variance covered (VC) value (0–100 %) describes the covered variance
of the features and is later used to adjust the reduction of the data.
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Classification

The classification is done with the WEKA data mining software.
As classifier an attribute selected classifier was used. This reduces the test
and training data with attribute selection before the data gets classified.

• Principal component analysis

• Ranker search

• Naïve Bayes classifier

Training:
The training is done with a leave-one-out cross-validation.
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Experimental Setup - Application
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Fig.: Eye tracking in progress
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Fig.: Eye Tracking Tool
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Fig.: Eye Tracking Tool classification menu
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Evaluation Process

• For each feature combination (7 different) and each of the two ROI sets
one feature extraction was done with the “Eye Tracking Tool”.

• This resulted in a total of 14 .arff files (7 · 2)
• Each file was then classified with different VC values in the PCA

(5-100%).
• For the best VC-value of each file the ROC-curve and the AUC were

calculated.
• These values were compared.

Feature
Combination

RTPA ROI Switch Pupil Size

1 x
2 x
3 x
4 x x
5 x x
6 x x
7 x x x

Tab.: The different combination of feature sets tested.
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Results
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Results

• Results of the clothed-unclothed ROI set

• Results of the body part ROI set

• Comparison with the results from Horndasch et al.
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Results of the Clothed-Unclothed ROI Set

• RTPA feature performs well.

• Pupil size and ROI switch feature have a bad performance.

• Best combination is RTPA and ROI switch, but with decreased accuracy.
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(b) ROI Switch

Fig.: Graphs showing the maximal accuracy and VC values of the clothed-unclothed
ROI set.
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(a) Pupil Size
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(b) RTPA & ROI Switch Combination

Fig.: Graphs showing the maximal accuracy and VC values of the clothed-unclothed
ROI set.
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Results of the Clothed-Unclothed ROI Set (cont.)
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Fig.: ROC-curve of the RTPA feature.

AUC = 0.76

accuracy = 0.71

max VC = 97%
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Results for the Body Part ROI Set

Similar results as in the clothed-unclothed ROI set

• RTPA feature shows good results.

• Again both pupil size and ROI switch were performing bad.

• Best combination is RTPA and ROI switch, this time with increased
accuracy.
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(b) ROI Switch

Fig.: Graphs showing the maximal accuracy and VC values of the body part ROI set.
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(a) Pupil Size
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(b) RTPA & ROI Switch Combination

Fig.: Graphs showing the maximal accuracy and VC values of the body part ROI set.
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Results for the Body Part ROI Set (cont.)
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Fig.: ROC-curve of the RTPA and ROI switch combination

AUC = 0.85

accuracy = 0.74

max VC = 90%
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Comparison with the results from Horndasch et al.

Results of Horndasch et al.

• “Index body parts” didn’t draw visual attention of eating-disordered
patients to a greater extend then that of normal controls.

• Eating-disordered girls spent significantly more time than healthy
controls looking at unclothed body parts.

Outcome of PCA shows selected features are often “index body parts”.

According to the study the results of the clothed-unclothed ROI set should be
better.
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Conclusion
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Conclusion

• In this thesis it was shown that eye tracking data classification is
possible.

• Maybe there are other features which can yield to even better results
(higher than 0.74 accuracy).

• Test with higher number of subjects would be preferable (more than 42).
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Thank you for your attention!
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Questions, whishes, suggestions?
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The End
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