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1 Introduction

Research on Human-Computer-Interaction has recently turned a strong focus on
the affective state of the user. Knowledge of this affective user state could lead to
more pleasant, safer and more effective user interfaces, or even to completely new
applications. Affective states are known to have bodily correlates, which can be
measured with suitable sensors. Most of the resulting physiological signals, e.g.
skin conductivity or heart rate, are not under voluntary control and therefore
not subject to masking like e.g. speech and gesture.

Physiological signals are therefore a valuable source of information for acqui-
ring the affective user state. Several studies have shown the feasibility of auto-
matically recognizing at least some few, application-dependent affective states
using physiological signals.

2 Physiological Signal Processing

A number of problems arise when trying to recognize the affective user state
with physiological signals:

Variability: There is a large intra- and interpersonal variability of the signals.
While different affective states exhibit specific reactions in physiological
signals on average, it can be difficult to assign a specific affective state
to a single realization of a physiological signal. For the classification of
physiological signals, it seems therefore beneficial to use large analysis
windows in order to smooth out some of the variability.

Artefacts: Physiological signals are easily corrupted by motion, pressure, mus-
cle activity or other external influences. These artefacts can be large in
magnitude compared to the body function actually measured and render
signals useless for whole passages. This conflicts with the need for large
analysis windows stated above.

Real-time requirement: For many conceivable applications of user state clas-
sification, at least a near real-time capability is required. On the one hand,
this means that the feature extraction must be fast enough for a high
classification frequency (i. e. small analysis step size) also for the above-
mentioned large analysis windows; on the other hand it means that large
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analysis windows alone do not suffice because they can hardly provide the
information necessary for a quickly reacting classification system.

Different Signals: The different physiological signals each exhibit individual
properties. This makes the engineering of a dedicated set of features ne-
cessary for each physiological modality—and each application-dependent
set of states.

Out approach seeks to address these four issues. It is assumed that some simple
detection algorithm is available for pronounced artefacts which marks passa-
ges in each signal which are probably corrupted as unusable. Furthermore, we
discuss the case of near real-time classification which means that all analysis
windows are causal, i. e. using only samples from the past.

3 Feature Extraction

For each signal, the length of the primary analysis window is chosen, from a
predefined set of lengths, as large as possible without containing an artefact.
Then, all smaller predefined window lengths are used to extract further, shorter
analysis windows. As we are using causal windows, each of the analysis windows
ends at the current time. Signals that do not possess an artefact-free history
even for the smallest of the predefined window lengths are ignored for current
classification. This multi-resolution approach aims at combining the stability of
large analysis windows and the capability of small analysis windows to reflect
fast changes.

From each of these sub-windows, a large number of multi-purpose features
like mean, standard deviation etc. are extracted. We present two versions for
these features: The “moving” features can be computed recursively for each new
sample and thus have a computational complexity that is independent of the
length of the analysis window and the step size. A ring-buffer is used to store
the necessary sample history; thus, the method has a memory complexity of the
largest of the predefined window lengths. In effect, these features can be com-
puted very fast for all sub-windows. The “sliding” features go further and drop
the need for a sample history, thus resulting in a constant memory requirement
with respect to window length. The resulting features from all sub-windows are
stacked into a single feature vector which is then reduced in dimension with
the Fisher transform. The large number of different features together with the
multiple resolutions aims at creating features specifically adapted to each signal
and the task at hand by means of the data-driven transform.

The final feature vectors are scored with a Gaussian Mixture Model. The
resulting probabilities are, assuming statistical independence between the dif-
ferent physiological signals, combined by multiplication, yielding a final score
for each class. Note that for Fisher transform and Gaussian mixture models,
dedicated parameters are estimated as well for each signal as for each primary
analysis window length. We evaluate our approach on a stress database collected
in a simulated car scenario. For the task of real-time, user-independent classifi-
cation of stress vs. non-stress, a class-wise averaged recognition rate of 89% is
achieved.
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